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Abstract. Whole Slide Images (WSIs) are crucial for cancer diagno-
sis in digital pathology. WSI classification typically relys on Multiple
Instance Learning (MIL). Existing MIL methods use attention mecha-
nisms to highlight key instances but struggle to capture instance interac-
tions. Although Transformers, State Space Models (SSMs), and Graph
Neural Networks (GNNs) have made progress in solving this problem,
they still face two main issues: (1) insufficient guidance from class-related
information in modeling instance relationships, and (2) inadequate in-
teraction between slides at different magnifications. To address these
issues, we propose Knowledge-guided Multi-scale Graph Mamba (KMG-
Mamba), which incorporates a Knowledge-guided Graph Representation
(KGR) method for class-related guidance and Cross-scale Knowledge
Interaction Mamba (CKIM) to facilitate effective cross-magnification in-
formation exchange. Experimental results on three public datasets show
KMG-Mamba outperforms current MIL methods in WSI classification.
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1 Introduction

Pathological slide examination is the gold standard for cancer diagnosis. Deep
learning-based automated classification of Whole Slide Images (WSIs) can sig-
nificantly improve diagnostic efficiency [2], but the enormous size of WSIs and
the requirement for detailed pixel-level annotations present substantial chal-
lenges [12, 22]. To address the challenges, weakly supervised learning methods
that require only slide-level labels have been developed [18, 14, 15, 17]. Many of
these methods are based on Multiple Instance Learning (MIL), where a WSI is
treated as a bag and patches cropped from the slide are considered its instances
within the bag. The final prediction is obtained by aggregating information from
these instances, with attention mechanisms often used to highlight important
ones. However, these methods typically overlook the contextual relationships
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between instances, leading to suboptimal WSI representations. Recent advance-
ments have leveraged Transformers, State Space Models (SSMs), and Graph
Neural Networks (GNNs) to model inter-instance relationships [25, 3, 27]. For
example, Transformer-based methods such as TransMIL [20] explore instance
relationships via self-attention mechanisms, while SSM-based approaches like
MambaMIL [27] employ selective state space models to capture long-range de-
pendencies. Meanwhile, GNNs have become effective tools for WSI analysis due
to their ability to capture local similarities in the topological structure of entities,
improving local relationship modeling [3]. As shown in Fig. 1A (a,b), GNN-based
methods treat instance representations as nodes, constructing graphs by assign-
ing edges based on feature similarity or spatial proximity [11, 4, 16, 21]. This
enables efficient local information propagation through graph convolution or at-
tention mechanisms. However, these methods lack category-specific knowledge
to guide interactions between instances [11, 4, 16, 21], limiting the flow of useful
information and reducing the model’s ability to identify discriminative regions in
WSIs. On the other hand, pathologists diagnose tumors by zooming in and out
of magnification levels, highlighting the need for multi-scale analysis. As shown
in Fig. 1B (a-c), although some methods have proposed feature concatenation
or weighted fusion to integrate information from different magnifications [15, 9],
these approaches lack effective interaction between features at different scales.
Recent work using hierarchical Transformers for cross-scale feature interaction
can capture long-range dependencies [8, 19], but suffer from quadratic compu-
tational complexity of the self-attention mechanisms, leading to high overhead
when processing instances at different magnifications.

To address these challenges, this paper presents the Knowledge-guided Multi-
scale Graph Mamba (KMG-Mamba). Specifically, to guide the modeling of inter-
instance relationships using category knowledge, we introduce a knowledge-
guided graph representation (KGR) method. As shown in Fig. 1A(c), each in-
stance feature is parameterized as a node containing base, head, and tail em-
beddings. A graph is constructed based on the directed connections between the
head and tail of the nodes. The base embedding of the node with the highest
degree of association is selected as the prototype, serving as the communication
hub for instance interactions. Then, a prototype-guided graph aggregation mod-
ule is employed to aggregate each node and its neighbors. To this end, we use an
instance-level classifier to predict the prototype’s logits and create a loss function
with class labels for optimization, thereby guiding the graph representation with
class knowledge. This ensures that, under class-related constraints, the graph fo-
cuses on learning discriminative information for WSI classification. To effectively
utilize multi-scale information, we introduce the Cross-scale Knowledge Interac-
tion Mamba (CKIM). As shown in Fig. 1B(d), inspired by the Selective Scan
Space State Sequential model (Mamba) in computer vision [28, 26], we develop a
cross-scale selective scanning module that models long sequences and promotes
instance interactions across magnifications through compressed hidden states,
facilitating information exchange at varying scales while maintaining linear com-
plexity. Our contributions are as follows: (1) We propose the Knowledge-guided
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Multi-scale Graph Mamba (KMG-Mamba) framework, which integrates class-
specific knowledge to enhance graph representations for WSI classification; (2)
We introduce the Cross-scale Knowledge Interaction Mamba to enable efficient
instance interaction across magnifications; (3) Extensive comparison and abla-
tion experiments on three publicly available datasets demonstrate the effective-
ness of KMG-Mamba.
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Fig. 1. Motivation of our method. (A) Existing methods and our knowledge-guided
graph representation for modeling the relationship between instances. (B) Existing
methods and our cross-scale selective scan module for multi-scale processing.

2 Method

The pipeline of the proposed Knowledge-guided Multi-scale Graph Mamba (KMG-
Mamba) is shown in Fig. 2(a). The low-scale and high-scale WSIs are cropped
into patches and extracted as instance features, which are input into the Knowledge-
guided Graph Representation module to construct the graph and generate pro-
totypes. The prototype-guided graph aggregation module enhances cross-scale
interactions and WSI representation, obtaining aggregated features, FLR and
FHR. Prototypes are predicted by a linear classifier to generate prototype logits,
which, along with class labels, form a loss function for optimization. FLR and
FHR are then fed into the Cross-scale Knowledge Interaction Mamba, where a
cross-scale selective scanning module facilitates interactions between instances
across different scales. Finally, an attention-based aggregator and classifier pro-
duce the bag logits.

2.1 Preliminaries

State-space models (SSMs) maps a one-dimensional function or sequence x(t) ∈
R to the output y(t) ∈ R through the hidden state h(t) ∈ RN , as calculated as:

h′(t) = Ah(t) +Bx(t), y(t) = Ch(t) (1)

where h′(t) represents the time derivative of h(t). Additionally, A ∈ RN×N ,
B ∈ RN×1 and C ∈ R1×N are system matrices. To handle discrete sequences,
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Fig. 2. (a) Pipeline of the proposed KMG-Mamba; (b) Knowledge-guided Graph Rep-
resentation; (c) Cross-scale selective scanning module.

the SSM employs a zero-order hold (ZOH) discretization method, mapping the
input sequence xt to the output sequence yt through the hidden state ht. The
specific discretization process can be expressed as:

Ā = exp(∆A), B̄ = (∆A)−1(exp(∆A)− I)∆B ≈ ∆B, C̄ = C (2)

ht = Āht−1 + B̄xt, yt = Cht (3)

where ∆ is used to convert the continuous parameters A and B into their dis-
crete counterparts Ā and B̄. Mamba [7] further introduces the selective scan
mechanisms to ensure parameter dependency on the input, enabling the model
to possess contextual awareness. This mechanism allows Mamba to effectively
model complex interactions within long sequences.

2.2 Knowledge-guided Graph Representation

The proposed knowledge-guided graph representation is shown in Figure 2(b).
It consists of two main components: graph construction and prototype-guided
graph aggregation. Prototypes are generated during the graph construction pro-
cess, and are predicted by a linear classifier as prototype logits. The prototype
logits along with the category labels are used to construct a loss function that
optimizes the training process. This approach effectively injects category knowl-
edge into the graph representation and enables class-aware message passing,
guiding both the graph construction and the information interaction between
nodes.
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Graph Construction The instance features P = {p1, p2, . . . , pL} are mapped
to the base embeddings B = {b1, b2, . . . , bL} in the graph through a node trans-
formation layer based on linear mapping. These are then further transformed into
head embeddings H = {h1, h2, . . . , hL} and tail embeddings T = {t1, t2, . . . tL}
using two additional linear mapping layers, thereby constructing a node for each
instance that simultaneously contains base, head, and tail embeddings. The pro-
cess of constructing the neighboring nodes N (i) for each node is as follows:

N (i) =
{
tj ∈ T : ωi,j ∈ Topk {ωi,j}Lj=1 , ωi,j = hT

i tj

}
(4)

where ωi,j denotes the similarity between the head embedding hi and the tail
embedding tj . For each node, the top K nodes corresponding to the tail embed-
dings with the highest similarity scores to its head embedding are selected as
its neighboring nodes. Each instance corresponding to a node can be associated
with other instances through its head, or be linked to other instances via its tail,
ensuring directed relationships and contributions between adjacent entities.

Prototype-guided Graph Aggregation We select the base embedding of the
node with the highest degree in the graph as the prototype bpt, and assign the
prototype to the head embedding hi of each node. Then the prototype-guided
graph aggregation is achieved through cross-attention. In this process, bpt is
mapped as the Query qpt, and the tail embeddings of N (i) linked to the head of
each node are mapped as the Key {k1, k2, . . . , kK} and Value {v1, v2, . . . , vK}.
The detailed procedure is as follows:

fi = Wb

(
Norm

(
K∑
i=1

(
exp (qptki)√

d
∑K

i=1 exp (qptki)

)
vi

)
+ hi

)
(5)

where Norm(·) denotes the layer normalization operation, d represents the fea-
ture dimension, and fi signifies the aggregated features. Wb is a trainable weight
matrix of dimension d× d, which implements the MLP-based linear transforma-
tion. The knowledge-guided graph representation ultimately yields the instance
feature sequence F = {f1, f2, . . . fL}.

2.3 Cross-scale Knowledge Interaction Mamba

The proposed Cross-scale Knowledge Interaction Mamba is shown in Fig. 2(a),
the low-scale feature FLR and high-scale feature FHR are processed by linear
layers and then fed into the cross-scale selective scanning module. This mod-
ule’s output is subsequently processed through layer normalization and linear
layers, with residual connections further enhancing its ability to model long-
range spatial dependencies. The proposed cross-scale scanning module is shown
in Fig. 2(c). Based on the selective scanning mechanism discussed in Section
2.1, we use linear mapping layers to generate system matrices BLR ∈ RLlr×N ,
CLR ∈ RLlr×N , and ∆LR ∈ RLlr×D for processing low-scale feature FLR, as well
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as system matrices BHR ∈ RLhr×N , CHR ∈ RLhr×N , and ∆HR ∈ RLhr×D for
processing high-scale feature FHR, thereby enabling the the module parameters
to be context-aware of the input. According to Equation (3), the system matrix
C is used to decode information from the hidden state ht to obtain the output
yt. Inspired by cross-attention mechanisms, we design the cross-scale selective
scanning module to facilitate information exchange, which is represented as:

ĀHR = exp (∆HRAHR) , ĀLR = exp (∆LRALR) (6)

B̄HR = ∆HRBHR, B̄LR = ∆LRBLR (7)

ht
HR = ĀHRh

t−1
HR + B̄HRx

t
HR, h

t
LR = ĀLRh

t−1
LR + B̄LRx

t
LR (8)

CIE
HR = CHR +Norm

(
CHRC

T
LRCLR

)
, CIE

LR = CLR +Norm
(
CLRC

T
HRCHR

)
(9)

ytHR = CIE
HRh

t
HR, y

t
LR = CIE

LRh
t
LR (10)

where xt
HR and xt

LR represent the inputs at time step t, while ytHR and ytLR
denote the outputs of the module. CIE

HR and CIE
LR are cross-scale matrices, and

their generation process leverages the interaction between CHR and CLR, thereby
capturing information from different scales and ultimately recovering the output
at each time step from the hidden states.

2.4 Training Strategy

After obtaining the prototypes from KMG-Mamba, we use a linear classifier to
convert them into prototype logits and apply a smoothed support vector machine
loss function with the bag labels to obtain LHR

Prototype and LLR
Prototype. Meanwhile,

we apply the cross-entropy loss function between the predicted bag logits and
the labels to obtain LBag. The total loss function L for training is given as:

L = 0.5
(
LHR
Prototype + LLR

Prototype

)
+ 0.5LBag (11)

3 Experiments

3.1 Datasets and Implementation Details

We evaluated the proposed KMG-Mamba on three public datasets: (1) CAME-
LYON16 [1], a dataset for detecting lymph node metastasis in breast cancer
patients, which consists of 399 WSIs, with 159 slides containing lymph node
metastasis and 240 slides without metastases; (2) TCGA-NSCLC [24], which
comprises 1040 WSIs for two lung cancer subtypes: adenocarcinoma (LUAD,
529 slides) and squamous cell carcinoma (LUSC, 511 slides); (3) TCGA-BRCA
[24], containing 977 WSIs for two breast cancer subtypes: invasive ductal car-
cinoma (IDC, 779 slides) and invasive lobular carcinoma (ILC, 198 slides). We
extracted features from non-overlapping patches (256×256 pixels) at different
magnifications (e.g., ×10, ×20), using ResNet-50 [10] pre-trained on ImageNet
[5] and PLIP [13] pre-trained on OpenPath. We compared the proposed method
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with the current state-of-the-art (SOTA) approaches, including: (1) graph-based
methods (Patch-GCN [4], WiKG [16]); (2) state-space model-based methods
(S4MIL [6], MambaMIL [27]); (3) multi-scale methods (DSMIL [15], MG-Trans
[21]); and (4) Attention-based methods (ABMIL [14], CLAM-MB [17], Trans-
MIL [20], and RRT-MIL [23]). To ensure robust evaluation, we employed 10-fold
Monte Carlo cross-validation and split datasets into training, validation, and
test sets at an 8:1:1 ratio. A learning rate of 2×10−4 was used, and performance
was assessed using the area under the curve (AUC), accuracy (ACC), and their
standard deviations.

3.2 Comparison Results

Table 1 presents the experimental results on three datasets. Compared to the
current SOTA methods, the proposed KMG-Mamba outperforms existing ap-
proaches in both feature settings. Additionally, we compared the computational
efficiency of our method with several existing advanced methods. As shown in
Fig. 3(a), we visualized the relationship between GPU memory allocation (GB)
and performance (AUC) on the TCGA-NSCLC dataset. The results demon-
strate that our model achieves excellent predictive performance while reducing
computational costs.

Table 1. Comparisons on TCGA-BRCA, TCGA-NSCLC and CAMELYON16.

Dataset TCGA-BRCA TCGA-NSCLC CAMELYON16
Metric AUC ACC AUC ACC AUC ACC

ResNet-50

ABMIL [14] 0.881±0.031 0.873±0.027 0.939±0.028 0.837±0.050 0.855±0.048 0.805±0.048
CLAM [17] 0.896±0.036 0.871±0.027 0.946±0.019 0.873±0.030 0.855±0.032 0.792±0.046

TransMIL [20] 0.875±0.036 0.851±0.017 0.946±0.023 0.871±0.030 0.839±0.054 0.783±0.073
RRT-MIL [23] 0.900±0.034 0.862±0.029 0.949±0.020 0.865±0.040 0.795±0.097 0.738±0.100
Patch-GCN [4] 0.896±0.040 0.871±0.037 0.955±0.016 0.874±0.032 0.838±0.036 0.773±0.085

WiKG [16] 0.895±0.043 0.849±0.048 0.942±0.030 0.847±0.044 0.843±0.069 0.805±0.040
S4MIL [6] 0.892±0.032 0.862±0.028 0.939±0.022 0.864±0.038 0.875±0.036 0.803±0.036

MambaMIL [27] 0.897±0.037 0.861±0.039 0.952±0.012 0.849±0.030 0.802±0.082 0.713±0.161
DSMIL [15] 0.877±0.038 0.836±0.035 0.932±0.029 0.860±0.044 0.848±0.045 0.810±0.037

MG-Trans [21] 0.889±0.036 0.871±0.031 0.954±0.013 0.873±0.024 0.815±0.054 0.760±0.058
KMG-Mamba 0.904±0.036 0.874±0.034 0.959±0.017 0.878±0.032 0.878±0.033 0.813±0.041

PLIP

ABMIL [14] 0.900±0.040 0.877±0.037 0.964±0.012 0.890±0.035 0.900±0.051 0.840±0.070
CLAM [17] 0.885±0.035 0.870±0.032 0.965±0.014 0.894±0.029 0.911±0.051 0.863±0.036

TransMIL [20] 0.884±0.052 0.882±0.030 0.957±0.015 0.867±0.036 0.899±0.032 0.820±0.082
RRT-MIL [23] 0.887±0.034 0.868±0.038 0.962±0.017 0.890±0.036 0.913±0.053 0.847±0.060
Patch-GCN [4] 0.894±0.034 0.862±0.028 0.964±0.015 0.889±0.028 0.908±0.040 0.850±0.046

WiKG [16] 0.887±0.034 0.874±0.026 0.958±0.018 0.876±0.036 0.887±0.046 0.863±0.032
S4MIL [6] 0.899±0.036 0.865±0.021 0.959±0.017 0.886±0.031 0.912±0.041 0.863±0.056

MambaMIL [27] 0.891±0.045 0.885±0.037 0.963±0.011 0.888±0.034 0.885±0.043 0.813±0.042
DSMIL [15] 0.903±0.047 0.868±0.020 0.956±0.018 0.892±0.026 0.909±0.047 0.847±0.038

MG-Trans [21] 0.898±0.048 0.891±0.021 0.962±0.012 0.881±0.028 0.877±0.037 0.813±0.068
KMG-Mamba 0.903±0.046 0.893±0.036 0.967±0.013 0.899±0.030 0.919±0.038 0.878±0.028

3.3 Ablation Study

We conducted ablation experiments to evaluate the contribution of each module
in our framework: (1) w/o KGR: remove the knowledge-guided graph represen-
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Table 2. Ablation analysis on three datasets.

Method TCGA-BRCA TCGA-NSCLC CAMELYON16
AUC ACC AUC ACC AUC ACC

w/o KGR 0.900±0.042 0.866±0.032 0.951±0.022 0.864±0.027 0.839±0.048 0.795±0.038
w/o PL 0.893±0.036 0.862±0.032 0.954±0.019 0.877±0.037 0.821±0.056 0.780±0.080

w/o CKIM 0.884±0.054 0.870±0.032 0.949±0.021 0.870±0.035 0.844±0.052 0.807±0.039
w/ CA 0.893±0.032 0.860±0.023 0.942±0.025 0.848±0.038 0.830±0.051 0.800±0.030
Ours 0.904±0.036 0.874±0.034 0.959±0.017 0.878±0.032 0.878±0.033 0.813±0.041
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Fig. 4. Attention map visualization on CAMELYON16.

tation (KGR); (2) w/o PL: remove the loss functions LHR
Prototype and LLR

Prototype

supporting KGR; (3) w/o CKIM: remove the cross-scale knowledge interaction
Mamba, and FLR and FHR are directly fed into the aggregator and classifier;
(4) w/ CA: replace the cross-scale scanning module with a cross-attention-based
Transformer. As shown in Table 2, our method surpasses the performance of
variant models across three datasets, confirming the importance of each module.
Fig. 3(a) shows that the cross-scale scanning module uses less GPU memory
than the cross-attention module, improving both computational efficiency and
performance. Additionally, we investigated the effect of the number of neighbor
nodes during graph construction in KGR as shown in Fig. 3(b), and found the
number of neighbor nodes has minimal impact. Finally, we visualized the atten-
tion maps from the aggregator of KMG-Mamba on CAMELYON16, as shown
in Fig. 4, and the attention maps of our method on the slides of both mag-
nifications demonstrate superior localization by focusing on cancerous regions
while minimizing normal tissue highlights. Although the attention maps from
ABMIL and MambaMIL also focus on the positive regions, they highlight a
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large amount of normal tissue, confirming the effectiveness of KMG-Mamba in
identifying discriminative regions within WSIs.

4 Conclusion

In this paper, we propose a novel knowledge-guided multi-scale graph Mamba
for WSI classification, incorporating class knowledge through prototypes. Ad-
ditionally, we propose the cross-scale knowledge interaction Mamba efficiently
utilizes slide information across different magnifications. Extensive experiments
on three public datasets demonstrate its effectiveness in WSI classification.
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