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Abstract. High-quality pixel-level annotations of medical images are es-
sential for supervised segmentation tasks, but obtaining such annotations
is costly and requires medical expertise. To address this challenge, we pro-
pose a novel coarse-to-fine segmentation framework that relies entirely on
coarse-level annotations, encompassing both target and complementary
drawings, despite their inherent noise. The framework works by introduc-
ing transition matrices in order to model the inaccurate and incomplete
regions in the coarse annotations. By jointly training on multiple sets
of coarse annotations, it progressively refines the network’s outputs and
infers the true segmentation distribution, achieving a robust approxima-
tion of precise labels through matrix-based modeling. To validate the
flexibility and effectiveness of the proposed method, we demonstrate the
results on two public cardiac imaging datasets, ACDC and MSCMRseg,
and further evaluate its performance on the UK Biobank dataset. Ex-
perimental results indicate that our approach surpasses the state-of-the-
art weakly supervised methods and closely matches the fully supervised
approach. Our code is available at https://github.com/AnghongDu/
RefineSeg-MICCAI2025.
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1 Introduction

The success of deep supervised learning in image segmentation has been largely
attributed to the availability of large-scale datasets with accurate pixel-level
annotations [23] [3]. However, such annotations are especially costly and time-
consuming to acquire in the medical domain, where expert-level annotation is
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required and often affected by ambiguous boundaries and inter-observer vari-
ability [5] [22]. These challenges are further compounded by strict privacy reg-
ulations, making large-scale, high-quality annotation even more difficult. For
instance, even for experienced experts, precisely delineating cardiac structures
such as the left ventricle (LV), right ventricle (RV), and myocardium (MYO)
is highly challenging due to ambiguous boundaries. These inherent annotation
uncertainties introduce label noise, making the dataset prone to inconsistencies
[22]. As a result, despite large imaging repositories like UK Biobank [13], curating
high-quality labels remains a significant challenge, motivating the development
of robust learning approaches capable of handling coarse annotations, which is
particularly crucial in the medical domain.

To address this challenge, semi-supervised learning (SSL) and weakly super-
vised learning (WSL) have been widely explored. SSL leverages a small number
of labeled samples alongside a large pool of unlabeled data for joint training
[9]. While SSL approaches have demonstrated effectiveness in improving model
performance, they still require a considerable amount of fully labeled images
as supervision. WSL exploit annotations that are easier to obtain than pixel-
wise labels, such as bounding boxes [17] [14], scribbles [10] [21] and point labels
[20]. Despite their lower annotation cost, WSL suffers from annotation noise, as
weak labels often fail to provide precise object boundaries, leading to increased
uncertainty during training. For example, in datasets like ACDC, the MYO is
embedded within the LV, making it difficult for bounding boxes to isolate the
classes precisely. A more effective weak annotation strategy is scribble-based an-
notation, where annotators simply draw lines and circles within the object of
interest (OOI) region to provide guidance. However, such methods often rely
on post-processing (e.g., ScribFormer [10] uses random walk propagation that
assumes closed-loop strokes) to generate full segmentation masks. In this work,
we adopt the coarse annotations that offer more information than scribble labels
while avoiding non-target pixels being grabbed into the bounding box. Mean-
while, creating coarse annotations, such as rough OOI and non-OOI boundaries,
has a cost similar to that of scribble annotations and can be performed by
non-experts. Given these advantages, leveraging computational methods to re-
fine noisy pixels from coarse annotations provides a highly efficient and low-cost
approach to enriching large-scale dataset annotations.

Our contribution: We propose a novel weakly supervised segmentation
framework that enables end-to-end joint training using both Positive (target)
and Negative (complementary) coarse annotations. Unlike the previous WSL
approaches, our method models and disentangles the complex mappings from
the input images to the coarse annotations and to the true segmentation distri-
bution simultaneously by introducing transition matrices regularizing. For eval-
uation, we conduct comprehensive experiments on the ACDC, MSCMRseg, and
UK Biobank datasets, achieving segmentation performance that surpasses state-
of-the-art weakly supervised methods and closely matches fully supervised ap-
proach. Moreover, our method offers a promising pathway for making it feasible
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Fig. 1: Overview of our proposed coarse-to-fine segmentation framework that
jointly learns from positive and negative coarse annotations.

to train large medical segmentation models, e.g., MedSAM [11], with minimal
manual labeling effort while maintaining high performance.

2 Method

2.1 Problem Set-up

In this work, we address the scenario where a set of images {xn ∈ RW×H×C}Nn=1

(with W,H,C denoting the width, height and channels of the image) are assigned
Positive (target) and Negative (complementary) coarse labels {y(ti)

n ,y
(ci)
n ∈

Y W×H}Pi=1, n = 1, . . . , N. Here, P denotes the total number of annotation
strategies, N represents the total number of images in the dataset, and Y =
{1, 2, . . . , L} denotes the set of possible classes. Figure 1 illustrates our proposed
end-to-end joint training framework. Our problem can be formulated as estimat-
ing the unobserved true segmentation distribution p(yn|xn) from the dataset
D = {xn, (y

(ti)
n ,y

(ci)
n )}Pi=1 with multiple coarse drawing labels.

2.2 Joint Training with Multiple Coarse Annotations

In this section, we describe how to jointly learn the true segmentation distri-
bution p(yn|xn) alongside the transition matrix A(ti) and A(ci) from multiple
coarse annotation networks. In short, we minimize the joint training loss func-
tions of the probability model using the observed positive and negative coarse
labels. A detailed description is provided below.



4 A. Du et al.

Pixel-wise Transition Matrix. Different from traditional methods that
assume all images share a same transition matrix [7], our approach leverages
the independent pixel-wise transition matrix [22] to refine segmentation predic-
tions for each input image. Our transition matrix is built on the Markov chain
transition assumption [4], which ensures the current segmentation state depends
only on its immediate previous state. In particular, we refer to the L × L ma-
trix, where each (m, k)-th element is defined by : A(r)(x, u, v)mk := p(ỹ

(r)
uv =

m | yuv = k,x), ∀m, k ∈ {1, . . . , L}, as the transition matrix at pixel (u, v) in
image x, r ∈ {ti, ci} represents the coarse annotation strategies.

Given an image xn, under the assumption that annotations at different pixels
are conditionally independent, the probability of the observed coarse labels on
each pixel (u, v) can be formulated as:

p(ỹ(r)
n (u, v)|xn) =

∑
yn∈Y

A(r)(u, v) · p(yn(u, v)|xn), (1)

where p(yn(u, v)|xn) represents the predicted fine-grained label distribution, and
p(ỹ

(r)
n (u, v)|xn) represents the predicted coarse label distribution. Annotation

network estimates the pixel-wise transition matrices
{
A(r)(x) ∈ [0, 1]W×H×L×L

}P

r=1

for input image x. Equation (1) describes the probabilistic transition process in
which annotation network r adjusts p(yn(u, v)|xn) to align with the coarse la-
bels.

Learning with positive coarse label. Given a training input xn and a
positive coarse label y(ti)

n , we optimize the transition matrix A(ti) of the coarse
annotation network by minimizing the following hybrid loss function:

L(ti)
pos =

Ppos∑
i=1

[
αiL(ti)

ce + βiL(ti)
dice

]
, (2)

where L(ti)
ce and L(ti)

dice denote the cross-entropy loss and Dice loss, which together
form the hybrid loss. Ppos represents the set of positive annotation strategies
within P . αi and βi are weight parameters that balance the contribution of each
loss term. Minimizing Equation (2) encourages the transition matrix A(ti) ad-
justed segmentation probability map p(yn|xn) to align closely with the provided
positive coarse label y(ti)

n . However, directly applying L(ti)
ce and L(ti)

dice to the entire
image is ineffective due to severe class imbalance. The CE loss can be minimized
by predicting all pixels as the most frequent background class. Although Dice loss
mitigates class imbalance, annotation noise in coarse labels makes unannotated
background regions unreliable, as they may still contain target information.

To address this issue, [18] proposed to restrict loss computation to only the
annotated pixels while ignoring unverified regions. Building on this idea, we
design the partial loss function, formulated as:

L(ti)
ce = − 1

|R(ti)
pos |

∑
(u,v)∈R(ti)

pos

y(ti)
n (u, v) log

[
A(ti)p(yn|xn)(u, v)

]
, (3)



RefineSeg 5

L(ti)
dice = 1−

2
∑

(u,v)∈R(ti)
pos

A(ti)p(yn|xn)(u, v)y
(ti)
n (u, v)∑

(u,v)∈R(ti)
pos

(
A(ti)p(yn|xn)(u, v) + y

(ti)
n (u, v)

) , (4)

where R(ti)
pos represents the set of pixels labeled as positive in y

(ti)
n , excluding

negative pixels.
Learning with negative coarse label. For some situations, it is easier to

provide negative coarse labels to help the model predict the true label distribu-
tion. However, if we directly apply loss, as in Equation (2), when learning with
these negative coarse labels, the model can only learn a mapping R→ Y that at-
tempts to predict the conditional probability p(ỹ

(ci)
n |xn) and the corresponding

negative pixel that predicts ỹ
(ci)
n (u, v) for a input image xn.

To address this issue, inspired by [19] [22], which summarizes all the proba-
bilities into a transition matrix M ∈ RL×L, where Mmk(u, v) = p(ỹ

(c)
n (u, v) =

m|yn(u, v) = k,xn) and Mmm(u, v) = 0, we introduce a transition-based nega-
tive learning approach. Here, Mmk denotes the entry in the m-th row and k-th
column of M , representing the probability of flipping the true label k into the
complementary label m. We achieve this by introducing a linear transformation
layer in the negative coarse label learning channel. This layer outputs v(xn) by
multiplying the output of the coarse annotation network A(ci)p(yn|xn), denoted
as u(xn), with the transposed transition matrix M⊤.

We also observe that p(ỹ(c)|x) can be transformed into p(ỹ(t)|x) using the
transition matrix M ,

p(ỹ(t)
uv = k | xn) =

∑
m̸=k

p(ỹ(t)
uv = k | ỹ(c)

uv = m,xn)p(ỹ
(c)
uv = m | xn). (5)

To enable end-to-end learning rather than transferring after training, we
define:

v(xn) = M⊤u(xn). (6)

Here, we apply the transposed transition matrix M⊤ to ensure that the
learned distribution v(xn) aligns with the negative coarse label. Then, Lneg =∑Pneg

i=1 (M⊤(A(ci)p(yn|xn)),y
(ci)
n ), where Pneg represents the set of positive an-

notation strategies within P .
Regularizing for the Transition Matrices. In the joint training process,

the model may rely excessively on the transition matrix to adjust p(yn|xn) to fit
the coarse labels rather than making subtle refinements to enhance the quality
of the segmentation distribution. Existing studies [22] employ trace constraints
to mitigate overfitting to coarse labels. However, negative coarse labels differ
significantly from positive labels, making trace constraints insufficient to prevent
unstable optimization caused by annotation heterogeneity. To address this, we
propose a identity matrix regularization term to stabilize the transition matrices:

Lreg =

Ppos∑
i=1

||A(ti) − I||2F , (7)
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where I is the identity matrix, ||·||2F denotes the Frobenius norm. This regulariza-
tion preserves the structural integrity of segmentation predictions while allowing
necessary refinements, preventing transition matrices from learning trivial map-
pings that overfit coarse labels instead of capturing meaningful features.

Finally, we combine the positive annotation loss Lpos and the negative an-
notation loss Lneg as our objective and optimize the following:

Ltotal =

Ppos∑
i=1

Lpos(A
(ti)p(yn|xn),y

(ti)
n )+

Pneg∑
i=1

Lneg(M
⊤(A(ci)p(yn|xn)),y

(ci)
n )+λLreg,

(8)
where λ is weight parameter for the regularization term.

3 Experiments

Dataset. Two public cardiac datasets, ACDC [1] and MSCMRseg [24] [6], along
with UK Biobank (UKBB) [13] dataset are adopted to evaluate our method.
ACDC contains cine MRI scans of 100 patients, MSCMRseg includes LGE
MRI scans of 45 cardiomyopathy patients, and UKBB cardiac dataset comprises
short-axis CMR images from 600 subjects. All three datasets are provided with
ground-truth annotations meticulously performed by experienced cardiovascu-
lar imaging specialists. To obtain positive-negative coarse annotations, we erode
the available segmentation masks for ACDC and MSCMRseg datasets, following
the approach in [2]. For UKBB, we obtain the realistic coarse annotations by
manually annotating the data following the principles in [15]. We also follow
the approaches in [20], [17] and [14] to obtain the box and point annotations
on ACDC and MSCMRseg datasets, and obtain scribbles on UKBB dataset for
the comparison experiments. Across all datasets, we uniformly use 80% of each
dataset for training and 20% for testing. Note that, during training, only coarse
annotations are adopted in our framework.

Implementation Settings. Our framework was implemented in PyTorch
and employed the 2D U-Net [12] as the network architecture. For all datasets,
we resized or padded all images to a uniform size of 224 × 224 pixels. For data
augmentation, zero-mean and unit-variance normalization, random flipping, and
random rotation were applied. Before being input to the model, each image is
normalized using min-max scaling to bring pixel values into the [0, 1] range. The
optimizer used was AdamW, with an initial learning rate of 1e-3 and a weight
decay of 2e-5. In Equation (2), we empirically set α = 0.6 and β = 0.4. For
Equation (8), we set λ = 0.2. All models were trained using one single NVIDIA
A100 40GB GPU for 200 epochs.

Baseline settings and Evaluation metrics. We conduct our experiments
under the assumption that no ground truth labels are available. Specifically, we
compare multiple weakly supervised approaches that leverage scribble annota-
tions [21] [10], coarse annotations [16], box-level annotations [14] [17], and point
labels [20]. Additionally, we include a semi-supervised method [9] that utilizes



RefineSeg 7

Table 1: The results of Dice score on ACDC and MSCMRseg datasets. Bold
denotes the best performance among all methods except nnUNet. Numbers in
bold indicate the best method that statistically (p < 0.01) better than other
methods by computing the p values of paired t-tests on Dice score.

Methods Annotations ACDC MSCMRseg

LV MYO RV Avg LV MYO RV Avg

Weakly-supervised

PA-Seg [20] points .841 .723 .729 .764 .771 .609 .534 .638
WeakPolyp [17] box .836 .718 .632 .728 .767 .566 .516 .615
BoxInst [14] box .803 .674 .583 .686 .747 .503 .494 .581
ScribFormer [10] scribbles .922 .871 .871 .888 .896 .813 .807 .839
CycleMix [21] scribbles .883 .798 .863 .848 .870 .739 .791 .800
LC-MIL [16] coarse .873 .684 .561 .706 .723 .537 .520 .593
Ours coarse .938 .884 .881 .901 .904 .839 .812 .852

Semi-supervised

PointWSSIS [9] 5%mask+point .901 .777 .807 .828 .844 .748 .705 .765

Fully supervised

nnUNet [8] mask .943 .901 .915 .920 .944 .882 .880 .902

point annotations, alongside the fully supervised nnU-Net [8], which represents
the state-of-the-art in cardiac segmentation when trained with ground truth la-
bels. To evaluate segmentation performance, we use the Dice score for RV, LV,
and MYO. In addition, we report the average Dice across these three regions to
provide a comprehensive measure of segmentation accuracy.

Quantitative Comparison. Table 1 compares the Dice performance of
models trained with different supervision strategies and backbones on the ACDC
and MSCMRseg datasets, including results reported in [10] and [21]. Our pro-
posed framework outperforms multiple weakly supervised approaches. Specifi-
cally, in the first section, our method surpasses the ScribFormer [10] by 1.4% in
average Dice on ACDC dataset (0.902 vs. 0.888) and by 1.3% on MSCMRseg
dataset (0.852 vs. 0.839). The second and third sections of Table 1 further present
the comparison of our framework with semi-supervised [9] and fully-supervised
[8] methods. Results indicate that our approach outperforms semi-supervised
training approach with partial masks and achieves performance close to full su-
pervision approach. This demonstrates the effectiveness of jointly training with
both positive and negative coarse annotations. The inclusion of negative coarse
annotations further enhances the model’s ability to extract positive features
while imposing stronger regularization, leading to more robust feature represen-
tation. Figure 4 highlights our model not only achieves a higher average Dice
score but also exhibits greater performance stability compared to other weakly
supervised approaches. Notably, our study is the first weakly supervised bench-
mark compared to fully supervised approach on the UKBB dataset, providing a
valuable reference for future research in this area.
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Fig. 2: Qualitative comparisons of our framework with state-of-the-art weakly
supervised methods on the ACDC and MSCMRseg datasets. Subscripts F and S
indicate segmentation models trained with full supervision and semi-supervision.

Scribformer

Fig. 3: Visualization of the segmentation per-
formance of different supervision strategies on
UKBB datasets. Subscripts F denote segmenta-
tion models trained with full supervision.

Fig. 4: The Dice distribu-
tion of different supervi-
sion strategies on the UKBB
dataset.

Qualitative Comparison. Figure 2 presents the segmentation visualiza-
tion of different methods on the ACDC and MSCMRseg datasets, and Figure 3
shows the performance of the approaches with different supervision strategies on
UKBB dataset. As shown in Figure 2, both WeakPolyp and LC-MIL struggle
to accurately preserve structural shape. In contrast, our approach effectively in-
tegrates and optimizes features from different coarse annotations, resulting in a
more comprehensive representation. This capability mitigates the inherent limi-
tations of Unet, which tends to focus primarily on localized features. Moreover,
compared to the weakly supervised results shown in Figure 3, our approach not
only produces results that are closer to the ground truth but also maintains
shape integrity comparable to fully supervised method.
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4 Conclusion

Pixel-level annotation remains a major challenge in medical image segmenta-
tion, constraining further progress in this field. To address this challenge, we
propose a novel weakly supervised segmentation framework that enables end-to-
end training using positive-negative coarse annotations by introducing transition
matrices. Experimental results show our method outperforms state-of-the-art
weakly supervised approaches and closely matches fully supervised model. By
reducing annotation costs without compromising performance, our method en-
hances efficiency and underscores the potential of weakly supervised learning for
cost-effective, high-precision segmentation. Furthermore, it presents a promis-
ing approach for facilitating the training of large medical segmentation models,
including MedSAM [11].
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