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Abstract. Magnetic resonance imaging (MRI) provides detailed soft-
tissue characteristics that assist in disease diagnosis and screening. How-
ever, the accuracy of clinical practice is often hindered by missing or
unusable slices due to various factors. Volumetric MRI synthesis meth-
ods have been developed to address this issue by imputing missing slices
from available ones. The inherent 3D nature of volumetric MRI data,
such as cardiac magnetic resonance (CMR), poses significant challenges
for missing slice imputation approaches, including (1) the difficulty of
modeling local inter-slice correlations and dependencies of volumetric
slices, and (2) the limited exploration of crucial 3D spatial information
and global context. In this study, to mitigate these issues, we present
Spatial-Aware Graph Completion Network (SAGCNet) to overcome
the dependency on complete volumetric data, featuring two main innova-
tions: (1) a volumetric slice graph completion module that incorporates
the inter-slice relationships into a graph structure, and (2) a volumetric
spatial adapter component that enables our model to effectively capture
and utilize various forms of 3D spatial context. Extensive experiments
on cardiac MRI datasets demonstrate that SAGCNet is capable of syn-
thesizing absent CMR slices, outperforming competitive state-of-the-art
MRI synthesis methods both quantitatively and qualitatively. Notably,
our model maintains superior performance even with limited slice data.
Code is available at https://github.com/JK-Liu7/SAGCNet.
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1 Introduction

Magnetic resonance imaging (MRI) provides significant insights into tissue and
anatomical characteristics and is widely used in medical research and clinical di-
agnosis. Nonetheless, missing slice is a common issue for volumetric MRI data,
particularly in cardiac magnetic resonance (CMR) volumes, within clinical appli-
cations and practice, caused by factors such as excessive scanning times, image
deterioration, motion artifacts, and disparate acquisition techniques [19]. Conse-
quently, the development of a unified and effective approach for imputing missing
slices using available data is critically needed [23].

Missing data imputation is a general method for tackling the incomplete vol-
umetric data problem, employing medical slice synthesis techniques to generate
missing slices from available 3D CMR images [17] [20] [21]. Deep learning-based
medical slice synthesis, using algorithm such as Convolutional neural network
(CNN) [18] and transformer [9], has demonstrated notable progress and become
an emerging research topic. Even though multi-modal MRI synthesis for missing
modality imputation has made significant strides in recent years [24], these meth-
ods are not specifically devised for the missing slice imputation task, resulting
in a lack of flexibility in handling arbitrary missing scenarios.

Below, we highlight the following two key challenges that need be addressed
for missing slice imputation task: (a) How to model inter-slice correlations and
dependencies explicitly to capture local interactions between slices? The inter-
slice correlations focus on the interaction between adjacent slices along the
through-plane in each volume, which is essential for learning discriminative
and informative slice representations [4]. Additionally, the internal dependencies
among different slices contribute to describing detailed anatomical structures
and lesions, which should be carefully modeled to fully explore and extract high-
level and hierarchical concepts [26]. Nevertheless, these inter-slice dependencies
are often overlooked due to their complex interdependence characteristics, mak-
ing them difficult to estimate and model. (b) How to extract the crucial 3D
spatial information in medical volumetric data to fully describe the global spa-
tial context? CMRs are inherently volumetric and three dimensional, making
it challenging for existing methods to handle their depth-wise properties [12].
Moreover, directly applying simple 3D models to high-resolution volumes is in-
feasible due to the significant computational memory, and data acquisition [2].
Therefore, for 3D CMR synthesis, inherent isotropic 3D spatial information must
be carefully and comprehensively considered to effectively learn 3D volumetric
spatial patterns and capture structural and fine-grained details.

To address the aforementioned challenges, we propose Spatial-Aware Graph
Completion Network (SAGCNet) for missing slice imputation. SAGCNet lever-
ages graph structure to explicitly model inter-slice relationships and incorporates
adapters to learn 3D spatial-related knowledge and characteristics within vol-
umes. SAGCNet is intricately designed to balance computational cost and per-
formance, achieving lightweight and efficient CMR synthesis with moderate
computational cost and rapid convergence rate, as depicted in Fig. 1.
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Fig. 1. (a) Performance comparison of SAGCNet and baselines under missing rate of
0.1, 0.4 and 0.7. (b) PSNR vs. floating point operations (FLOPs). The area of each
blob denotes the number of model parameters. (¢) Convergence rate of SAGCNet and
baselines under missing rate of 0.1. All experiments are conducted on the UK Biobank
dataset. More details are presented in the experiments section.

Our main contributions are as follows: (1) A unified missing slice imputation
framework, SAGCNet, is proposed to effectively synthesize CMR images for
arbitrary missing scenarios. (2) We propose a volumetric slice graph completion
(VSGC) module, employing graphs to capture inter-slice correlations. To the
best of our knowledge, our work is the first to leverage graph-based modeling at
slice level for medical image synthesis. (3) We introduce a simple yet effective
volumetric spatial adapter (VSA) to preserve 3D volumetric spatial information,
enabling our model to extract crucial volumetric insights and thus be spatial-
aware. (4) Experimental results on three datasets demonstrate the quantitative
and qualitative superiority of SAGCNet under various missing rates.

2 Methodology

2.1 Problem Formulation and Model Overview

Given a volume with randomly missing slices, our aim is to construct a unified
and robust framework to handle arbitrary missing slice scenarios, i.e., various
missing positions and numbers, which simulates the practical clinical scenario.
Mathematically, consider the given incomplete volume V € RV *XH>XW with avail-
able slices V, € RMXHXW and missing slices V., € RPXH*W where M and P
denote the numbers of available and missing slices, respectively, and N = M+ P.
SAGCNet reasons about the missing slice position automatedly and synthesizes
the complete volume as output according to the input available slices at once.
The overall architecture of SAGCNet is depicted in Fig. 2. SAGCNet utilizes
modified UNETR [6] with VSA as visual encoder to extract hierarchical fea-
tures. Moreover, VSGC blocks are incorporated into the backbone encoder to
fully exploit inter-slice relationships from multi-views. Ultimately, following the
U-shaped network, the CNN-based decoders with skip connections are employed
to reconstruct and synthesize images. Next, we will elaborate the detailed infor-
mation of VSA and VSGC modules.
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Fig. 2. The overview of our proposed SAGCNet.

2.2 Volumetric Spatial Adapter Module

To bridge the gap between 2D images and volumetric medical data, we devise
a series of VSA modules integrated into each transformer block, empowering
SAGCNet to learn spatial information inherent in 3D volumetric medical data
[11]. Specifically, as illustrated in Fig. 2, each VSA can be represented as

VSAH) =H + o (Conv 3D (Norm(H) - Wgoun )) Wyp (1)

where H denotes the original feature representation, Wyown and Wyown rep-
resent the down- and up-projection layer respectively, Conv 3D indicates the
3D depth-wise convolutional layer. The 3D convolutional layer serves as a core
module, aiming to extract valuable volumetric information. The down-projection
layer reduces the original dimensionality, thereby lowering the number of param-
eters and making the VSA more flexible and lightweight. For each Transformer
block, two VSAs are plugged before and after the multi-head self-attention mod-
ule to produce better performance in practice.

2.3 Volumetric Slice Graph Completion

Leveraging the strong representation learning capability of Graph Neural Net-
works (GNNs) in complex relation modeling, graphs can effectively depict the
spatial correlations of inter-slice properties through the message propagation
pipeline [10,13]. To this end, we propose to model volume data as graphs and
establish a multi-view graph completion network to discover node interactions
within each volume and extract inter-slice dependencies.

Graph Construction. After obtaining feature representations from the
transformer blocks, we first employ a channel adapter to construct the node
features, as shown in Fig. 3. Next, the k-Nearest Neighbors (kNN) algorithm is
used to construct the incomplete volume slice graph G = {V, £}, where V and E



SAGCNet 5

Volumetric Slice Graph Completion (VSGC)
[B,C,H,W]

[B,N,H,W] = =
. s wxm, O~ g .
g5 =% R o8¢ Rosnape | & &
2 Reshape ‘G o\ ) eshape -4
E% E% ez LLLL";.E.%‘» "534: ~
lo < °© g ) bl 82 S <
( 5 s
3 O &) £}
= - [BNHxW] L [B,C,H,W]
[T Complete Attribute — — — Missing Edge e Multi-view Graph Completion Network  Channel Adapter
CITT] Missing Attribute o - 41
o Q
\¢ ~ Layer Norm
P o GNN
arameter - O —
—_— . —> O > Encoder
Initialization I
o A i Up Linear
O O v 4
Shared i
L
Fara:neter i 3D Conv
v
_— D 9 H
2
Information \a @) o) GNN
Propagation O Encoder
- . c—0 %
Incomplete Volume Slice Graph Structure-view

Fig. 3. An illustration of the VSGC module.

represent the node (slice) and edge (inter-slice correlation) set, respectively. As-
sume the slice number of a given volume, (i.e., node number) is n. Let X € R"*¢
and A € R"*™ denote the original node attribute and adjacency matrix, respec-
tively. Notably, nodes corresponding to missing slices are treated as nodes with
missing attributes, and their associated edges are also considered incomplete.

Multi-view Graph Completion Network. Drawing inspiration from pre-
vious work [7], we devise a multi-view graph completion network to impute
missing graph data at both attribute and structure levels. The attribute-view
learning process, with parameterized completion, focus on extracting essential
information from incomplete attributes while minimizing the impact of the in-
complete graph structure on learning. Meanwhile, the structure-view learning
process is designed to effectively model the incomplete graph structure without
being hindered by missing node attributes.

Specifically, for attribute-view imputation, we use learnable neural network
parameters to initialize node attributes, reducing noise in the original attribute
matrix through iterative refinement. This strategy generates the augmented
graph G* = (X%, A). Regarding structure-view completion, we utilize person-
alized PageRank [5] to propagate information and enhance its diversity, produc-
ing G° = (X*®, A®), which is crucial for learning comprehensive and discrimi-
native node representations under conditions where partial edges are missing.
We choose Graph attention network [16] (GAT) as the GNN encoder due to its
expressive power, as follows:

Z° = fgar (G*).Z° = fear (G°), (2)

Afterwards, to bridge the semantic gap between different views resulting from
graph incompleteness and to achieve consistent representations, the contrastive
learning paradigm is applied to maximum the mutual information:

1 < z},7; z,7¢
Li=—5-3 <1ong(z(’;)z) +log Zf((z)z)> (3)

S
i1 j#i P \Zir B j#i P \Zis Zj
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where ¢ (a,b) = e5"(@b)/7 sim(.,.) is the cosine similarity function, 7 is the
temperature parameter. Finally, the fused embeddings from the two views are
passed through another channel adapter with a residue connection to transform
dimensionality for subsequent operation. The VSGC components are inserted
after the 3rd, 6th, and 12th transformer blocks, respectively.

Loss Function. The overall loss function of SAGCNet is defined as

L= )\T‘CTCC + )\sﬁsyn + )\clﬁcl (4>

where Ly, Lgyn, and L, denote the reconstruction loss, synthesis loss and
contrastive loss, respectively, with A., As, and A, are trade-off parameters for
balance. Lycc, Lsyn consist of L1 loss and perceptual loss.

3 Experiments

Datasets. We validate the performance of the proposed SAGCNet on three car-
diac MRI datasets: UK Biobank (UKBB) [14], Multi-Ethnic Study of Atheroscle-
rosis (MESA) [1] and Automatic Cardiac Diagnosis Challenge (ACDC) [22]. The
UKBB dataset we utilized contains CMR scans from 600 patients, each with 50
temporal phases. The MESA dataset consists of 299 CMR volumes, with the
number of slices per volume ranging from 6 to 14. The ACDC dataset is a pub-
licly available resource containing CMR images from 100 patients, with 6 to 21
slices per volume. We divide all datasets into training and test sets in the ratio
of 8:2. During preprocessing, each 2D slice image is resized to 256 x 256. Zero-
padding is applied for all volumes in the through-plane direction to ensure the
fixed input size. Min-max normalization is employed to scale the intensity range
of all images to [-1, 1]. To enhance data diversity, random flipping and rotation
are applied as data augmentation.

Implementation Details. The missing rate 7 is defined as n = P/N, which
is fixed during training and inference stages. For training phase, the missing
slices are randomly sampled based on 7 at each iteration to ensure that our
model is robust to arbitrary missing scenario. For model hyperparameters, we
set the number of kNN neighbors to 3 and the number of GAT layers to 2. The
hyperparameter 7 is set empirically to 0.8. Additionally, A, As, and Ay are set
to 5, 20, and 0.001, respectively. All experiments are implemented on an Nvidia
A100 GPU. We train SAGCNet for 2000 epochs using the Adam optimizer with
an initial learning rate of le-4. The cosine annealing scheduler is applied to decay
the learning rate to 5e-6, and the training batch size is set to 8.

Baselines and Evaluation Metrics. We compare the proposed SAGCNet
with several state-of-the-art (SOTA) image synthesis methods as baselines, in-
cluding Pix2Pix [8], MMGAN [15], ResViT [3], UNETR [6], and MTT-Net [25].
To quantitatively evaluate the performance of SAGCNet and baselines, three
commonly-used evaluation metrics are adopted, including mean absolute error
(MAE), peak signal-to-noise ratio (PSNR), and structural similarity (SSIM).

Quantitative Results. Table 1 presents the quantitative results of our pro-
posed SAGCNet and baseline models on three datasets under the missing rate
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1n=0.1, 0.4 and 0.7. The experimental results demonstrate that our SAGCNet
consistently outperforms SOTA baselines across various missing rate settings,
highlighting its superiority and effectiveness in synthesizing high-fidelity CMR
images. Notably, SAGCNet shows greater performance gains under low missing
rate settings (e.g., n=0.1), with improvements ranging from 1.02% to 4.37% in
PSNR. Furthermore, even in high missing rate scenarios (e.g., n=0.4 and 0.7),
SAGCNet also surpasses competitive baselines across three datasets, underscor-
ing its robustness and adaptability to real-world slice missing patterns.

Table 1. Quantitative performance comparison of different methods on three datasets
under three missing rate configurations. The best performance is in bold.

Missing Rate
0.4

01 ! 0.7
Dataset Method PSNR 1 S51M 1|/ PsNR 1 Ssi 1| Psng T Ss1na 1

Pix2pix [8 3277 0.925 19.30  0.674 18.89  0.653
MMGAN [15] 3272 0.927 19.16  0.669 18.96  0.669
UKBB ResViT [3 34.74  0.948 19.29  0.677 18.90  0.655
UNETR [6 36.55  0.964 19.31  0.680 18.94  0.653
MTT-Net [25] 35.24  0.951 19.16  0.669 18.82  0.650
SAGCNet (Ours) 38.15 0.973 || 19.39 0.688 || 19.03 0.673
Pix2pix [8 28.83  0.811 22.25  0.742 21.72  0.738
MMGAN [15] 28.62  0.810 22.25  0.740 21.71  0.734
MESA ResViT [3 29.03  0.815 21.80  0.738 21.81  0.739
UNETR | 33.23 0.884 22.21  0.764 21.93  0.747
MTT-Net []25] 28.96  0.808 22.29  0.746 21.87  0.740

SAGCNet (Ours) 33.57 0.888 || 22.51 0.770 || 21.95 0.762

Pix2Pix [8 25.57  0.758 18.98  0.625 18.47  0.613
MMGAN [15] 25.68  0.764 18.96  0.632 18.50  0.619
ACDC ResViT [3 25.09  0.751 18.91  0.623 18.38  0.610
UNETR [6 29.30  0.862 19.03  0.631 18.60  0.624
MTT-Net [25] 25.16  0.756 19.02  0.620 18.55  0.611

SAGCNet (Ours) 30.19 0.889 || 19.12 0.637 || 18.63 0.627

To further evaluate the performance, we also compare the quantitative results
of SAGCNet with I2GAN [17], which is specifically designed for the single missing
slice scenario (i.e., P = 1). As illustrated in Table 2, our SAGCNet yields better
performance across three metrics. It can be noticed that I2GAN is limited to
scenarios where a single slice is missing.

Table 2. Quantitative performance comparison of our SAGCNet and 12GAN [17] on
two datasets under single missing slice configuration. The best performance is in bold.

Dataset Method MAE | PSNR 1t SSIM 1

DGAN [I7] 0.0257 2664 0873
UKBB 51 0.0110 38.19  0.978
DGAN [17] 0.0428 2430 0.846
Ours 0.0304 30.86  0.895

ACDC
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Fig. 4. Qualitative results of all methods on the UKBB dataset. Every two rows, from
top to bottom, denote the experimental results and the error maps, respectively.

Qualitative Results. The qualitative results of representative examples
from the UKBB dataset are shown in Fig. 4. It can be observed that baseline
approaches tend to generate blurrier results that lack anatomical details and
edges. In contrast, by modeling inter-slice dependencies and capturing global
context information, our SAGCNet significantly reduces the red areas of the
error maps of the synthesized images, particularly in anatomical structures and
regions, indicating the capability of SAGCNet to produce results that are both
visually realistic and closely aligned with the ground truth.

Ablation Studies. To verify the effectiveness of each component in SAGC-
Net, ablation studies are conducted by constructing variant models. As shown
in Table 3, each module contributes differently to the model performance on the
UKBB and ACDC dataset, highlighting the positive impact of key components
of SAGCNet in the missing slice imputation task. Furthermore, the VSA and
VSGC modules exhibit the most significant performance improvements, further
demonstrating the necessity and rationale of capturing inter-slice correlations
and extracting valuable 3D information for volumetric data.

4 Conclusion

In this paper, we introduce SAGCNet for unified missing slice synthesis in vol-
umetric CMR data. SAGCNet flexibly handles arbitrary sets of missing slices,
reducing excessive reliance on complete volumetric data in real-world scenarios.
By integrating inter-slice dependencies, we propose volumetric slice graphs that
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Table 3. Quantitative performance comparison of ablation variants.

UKBB Dataset ACDC
Method MAE | PSNR 1 SSIM 4 H MAE | PSNR t SSIM 4
w/o VSGC 0.0117 37.94 0971 || 0.0329 30.08  0.879

0.0331  29.98 0.875
0.0334  30.01 0.869
0.0328  30.12 0.881
0.0326 30.19 0.889

w/o attribute-view 0.0121  37.93  0.970
w/o structure-view 0.0119  37.91 0.968
w/0o L 0.0116  38.03 0.971

w/o VSA 0.0130  37.05 0.967 || 0.0357  29.45 0.875
SAGCNet 0.0113 38.15 0.973

employ the graph structure to model CMR slices and impute absent data in a
graph completion manner. To learn spatial-aware representations, we introduce
the volumetric spatial adapter, empowering our model to adaptively exploit 3D
spatial knowledge. Our extensive experiments demonstrate the superior effec-
tiveness and robustness of SAGCNet compared with SOTA methods in both
sufficient and limited slice data scenarios.
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