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Abstract. Large Vision-Language Models (VLMs) capture rich multi-
modal knowledge through pretraining and demonstrate remarkable per-
formance across various tasks. However, adapting these foundation mod-
els to medical image analysis through fine-tuning faces significant chal-
lenges, including constrained computing resources, data privacy con-
cerns, and data heterogeneity. Federated Parameter-Efficient Fine-Tuning
(PEFT) emerges as a promising solution, enabling multiple clinical in-
stitutions to collaboratively fine-tune VLMs with a small number of pa-
rameters. However, it still suffers from data heterogeneity across clients
and high training memory requirements. In this work, we propose a
personalized Federated Side-Tuning (pFedST) method. Specifically, we
equip each client with a frozen pre-trained CLIP model and a lightweight,
learnable, personalized side network for fine-tuning. Only a portion of the
side network parameters participates in model aggregation, while the
personalized LoRA modules within the side network address data het-
erogeneity with minimal additional parameters. Extensive experiments
demonstrate that pFedST consistently outperforms 12 state-of-the-art
methods across two real multi-center medical image classification tasks.

Keywords: Personalized Federated Learning · Side Tuning · Medical
Image Classification.

1 Introduction

Large Vision-Language Models (VLMs), such as CLIP [15], have demonstrated
remarkable performance and generalization across various tasks by capturing
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Fig. 1: Overview of (a) parameter-efficient fine-tuning, (b) memory-efficient side-
tuning, and (c) the proposed personalized federated side-tuning (pFedST).

rich multimodal knowledge through pretraining [11]. However, adapting VLMs
to medical image analysis [6, 4, 19, 24] faces several significant challenges [29],
including strict data privacy regulations [13, 21, 20], limited computational re-
sources, and substantial communication costs across multiple clinical institu-
tions. Federated PEFT [28], which integrates parameter-efficient fine-tuning tech-
niques within federated learning, has emerged as a promising solution. It enables
collaborative training of a unified global model without data sharing, while re-
ducing computational resource requirements. However, it often fails to handle
the diverse data distributions across local clients, rendering the unified global
model less effective in adapting to data heterogeneity [27]. This limitation em-
phasizes the need for personalized federated PEFT methods that can effectively
customize the global model to fit the varied data distributions.

Existing personalized federated PEFT methods can be broadly categorized
into three types: prompt-based, adapter-based, and LoRA-based approaches.
Prompt-based methods introduce personalized prompts at the input layer to
address data heterogeneity, which can be optimized through contrastive learn-
ing [10], optimal transport [12], or dynamic prompt generation [23]. Adapter-
based methods insert personalized adapters [3, 22] between the frozen blocks of
the pretrained model without modifying the pre-trained weights. LoRA-based
methods [1] fine-tune the model by inserting low-rank learnable matrices into
the frozen layers, enabling personalization with fewer additional parameters. Ex-
isting methods face two key challenges: (1) Insufficient personalization. Prompt-
based methods in shallow layers cannot capture complex data characteristics,
while adapter-based methods require more parameters than LoRA, limiting fine-
grained personalization with limited resources. (2) Ineffective computation. As
shown in Fig. 1(a), existing PEFT methods still require gradient backpropaga-
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tion through the large pre-trained model, resulting in high GPU memory con-
sumption and slow training speed [17].

To deal with the aforementioned two issues, we propose a personalized Federated
Side-Tuning method, termed pFedST. In pFedST, each local client is equipped
with a frozen pre-trained CLIP model, consisting of an image encoder and a
text encoder. As shown in Fig. 1(c), pFedST introduces a lightweight personal-
ized side network to the image encoder for fine-tuning. This personalized side
network offers two significant advantages: (1) pFedST leverages personalized
LoRA modules in the side network, tackling data heterogeneity at the cost of
minimal additional parameters. (2) pFedST takes the intermediate features of
the frozen model as input to the personalized side network, restricting gradient
backpropagation to the final frozen block and the lightweight side network. This
significantly reduces training memory requirements.

The main contributions are three-fold. (1) We investigate a rarely explored
problem, i.e. fine-tuning VLMs in federated scenarios considering both data het-
erogeneity and training memory requirement. (2) We propose a novel personal-
ized federated PEFT method, termed as pFedST, which consists of a personalized
side network and a personalized training strategy to tackle data heterogeneity
and reduce training memory requirement. (3) pFedST outperforms 12 SOTA
methods on two real multi-center medical image classification datasets.

2 Method

As illustrated in Fig. 2, personalized federated learning involves a global model
on the server and M clients, each equipped with its own personalized module in
addition to the global model. Each client is equipped with a pre-trained CLIP
model, comprising an image encoder I and a text encoder T . In pFedST, we
introduce a personalized side network on the image encoder S for each client
(Sec. 2.1), which consists of global side blocks for capturing shared knowledge
and local LoRA modules for personalized adaptation. During local fine-tuning,
both the global and personalized modules are updated. However, only global
side blocks of the side network are aggregated during the aggregation phase.

2.1 Personalized Side Network

As shown in Fig. 2, each client is first equipped with a frozen, pre-trained CLIP
model containing an image encoder I and a text encoder T . The image encoder
I consists of a patch embedding layer followed by L transformer blocks. Let
I0 denote the feature output from the patch embedding layer, and Ii denote
the feature output from the i-th transformer block, where i ∈ {1, 2, . . . , L}.
For the m-th client, a lightweight parallel side network Sm containing L−1 side
blocks is injected alongside the image encoder I. For the i-th side block, the
inputs Xi consist of two components: the output from the (i−1)-th side block
Si−1 and the projected feature P i−1, which is derived from Ii−1 through a
linear down-projection layer. This layer includes a global down-projection matrix
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WD
i ∈ Rd1×d2 and a personalized LoRA module ∆WD

m,i ∈ Rd1×d2 for the m-th
client. The projected feature P i is computed as:

P i = LN(Ii(W
D
i +∆WD

m,i)) = LN(Ii(W
D
i +AD

m,iB
D
m,i)), (1)

where AD
m,i ∈ Rd1×r and BD

m,i ∈ Rr×d2 are low rank projection (r ≪ d1, r ≪ d2),
and LN(·) denotes the layer norm function. Therefore, the output of the i-th
side block is then given by:

Si = fi(Xi) +Xi = fi(Si−1 + P i−1) + Si−1 + P i−1, (S0 = 0) (2)

where Si denotes the output of the i-th side block, and fi(·) represents the
transformation module that combines the inputs. Specifically, we set fi(·) to be
a personalized multi-head self-attention (pMHSA) as follows:

pMHSA(Q,K,V ) = Concat(head1, head2, . . . ,headh)(W
O
i︸ ︷︷ ︸

global

+ ∆WO
m,i︸ ︷︷ ︸

personalized

) (3)

where WO
i is a global linear layer and ∆WO

m,i is another personalized LoRA
module, and each head is:

headj = Softmax

(
(XWQ

j )(XWK
j )⊤√

dj

)
(XW V

j ). (4)
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At the end of the side network, we combine the output of the side network
SL−1 with the projected feature PL−1, and upscale it using a personalized up-
projection layer WU

i +∆WU
m,i. The upscaled feature is integrated with IL−1,

and the resulting feature is then fed into the last frozen transformer block IL of
the image encoder. The final output of the fine-tuned image encoder is

I = IL(IL−1 + LN((SL−1 + PL−1)(W
U
L−1 +∆WU

m,L−1))), (5)

where WU
L−1 is a global linear layer, ∆WU

m,L−1 is a personalized LoRA module.
During model aggregation, clients upload only the global modules, including

global projections (WD and WU ) and global self-attention blocks (WQ, WK ,
W V and WO), while keeping local LoRA modules (∆WD, ∆WU , and ∆WO)
private for personalization. The server then aggregates these global modules via
weighted averaging based on client dataset sizes. The aggregation process is
defined as follows:

W =
Nm∑M

m=1 Nm

Wm, (6)

where Nm denotes the dataset size of client m, and W = (WD,WU ,WQ,WK ,
W V ,WO) represents the global modules to be aggregated.

2.2 Training Strategy

Built upon CLIP, pFedST encodes the text feature for class c as T c = T (P ;CLSc),
where P is a predefined prompt and CLSc denotes the disease name. Given an
input image x, the global image feature IG is extracted using the global modules.
Meanwhile, the personalized image feature I is obtained through the personal-
ized modules. Therefore, the personalized cross-entropy loss is:

Lce = − 1

Nm

Nm∑
n=1

log
exp(cos(I,T y)/τ)∑C
c=1 exp(cos(I,T c)/τ)

, (7)

where T y is the text feature of ground-truth and τ is the temperature hyperpa-
rameter.

Furthermore, we introduce a contrastive loss to preserve shared knowledge
by treating the global image and ground-truth text features as positive pairs,
while enhancing personalization by treating the global and personalized image
features as negative pairs. The contrastive loss is defined as

Lcont = − log
exp(2 cos(IG,T

y))

exp(2 cos(IG,T
y)) + exp(2 cos(IG, I))

. (8)

The overall loss function is

L = Lce + Lcont. (9)
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3 Experiments

3.1 Experimental Settings

Datasets and Evaluation Metric. We evaluated the proposed pFedST on two
real-world multi-center medical image classification datasets: FedISIC [18] and
FedDRG [2]. FedISIC is a skin lesion classification dataset sourced from four
distinct medical centers, with sample sizes of 12,413, 3,952, 3,362, and 2,256,
respectively [18]. FedDRG is a diabetic retinopathy grading dataset collected
from five centers, comprising 3,662, 12,521, 2,000, 516, and 1,744 samples. Each
medical center was treated as an independent client, with its data split into
training and test sets in an 80%/20% ratio, following official protocols [18, 2].
For performance evaluation, we adopted balanced accuracy (BACC) for FedISIC
following [18, 5] and Area Under the Curve (AUC) for FedDRG following [2].
Implemental Details. For both FedISIC and FedDRG datasets, each sample
was resized to 256×256 pixels. Training samples were augmented with random
rotation, flipping, and random cropping to 224×224 pixels to enhance model
robustness and generalization. Test samples were center-cropped to 224×224
pixels for consistency. Federated learning was conducted for T=100 communi-
cation rounds, with each client training locally for E=1 epoch per round. The
local models were based on the CLIP ViT-B/16 architecture and were optimized
using the AdamW optimizer with an initial learning rate of 1e−3, betas set to
(0.9, 0.999), and weight decay of 1e−2. The learning rate was adaptively adjusted
using a cosine annealing scheduler, decaying to a minimum value of 1e−6 over
the training process. Each experiment was repeated three times with different
random seeds, and the mean and standard deviation of performance metrics were
reported for comprehensive evaluation.
Comparison Methods. We compared pFedST with state-of-the-art methods:
(1) a fully fine-tuned baseline, Fully-FT; (2) five federated PEFT meth-
ods—CLIP-Adapter (IJCV24), CLIP-LoRA (CVPRW24), DTL+ (AAAI24),
LAST (Arxiv24), and FedTPG (ICLR24); and (3) six personalized feder-
ated PEFT methods—DPLCLIP (arXiv21), FedTPG* (ICLR24), FedAPT
(AAAI24), FedPGP (ICML24), FedOTP (CVPR24), and FedDAT (AAAI24).

3.2 Results

The performance of each client and the average performance across all clients
are presented in Table 1 for FedISIC and Table 2 for FedDRG. In these tables,
the best results are highlighted in bold, while the second-best results are indi-
cated with an underline. As observed from the results, personalized federated
PEFT methods consistently outperformed general ones on both datasets, which
is attributed to their client-specific adaptation to heterogeneous data distribu-
tions. The proposed method, pFedST, demonstrated significant efficacy by con-
sistently achieving the highest average performance across all clients. Specifically,
pFedST attained average results of 84.46% on FedISIC and 90.76% on FedDRG,
surpassing all competing methods. These results highlight the effectiveness of
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Table 1: Performance of pFedST and 12 competing methods on FedISIC.

Method #Params. Mem. FedISIC (BACC, %)
(M) (GB) A B C D Avg

Fully-FT 86.19 5.55 89.2289.2289.22±0.66 78.15±1.16 84.86±1.49 62.53±2.38 78.69±0.51

Federated Parameter-Efficient Fine-Tuning
CLIP-Adapter [9] 3.67 3.69 85.20±0.81 83.55±2.48 82.04±2.21 61.03±2.71 77.98±0.38

CLIP-LoRA[25] 1.18 5.44 85.20±0.77 82.36±1.47 83.79±2.52 59.96±3.31 77.83±1.24

DTL+ [8] 1.29 3.02 82.12±0.62 88.49±1.79 80.47±1.01 58.50±2.18 77.40±0.50

LAST [17] 1.53 2.69 82.32±0.31 88.95±0.51 77.76±0.83 61.85±0.70 77.72±0.18

FedTPG [14] 5.65 3.76 84.67±1.68 82.54±3.34 84.01±2.27 61.79±3.41 78.25±1.38

Personalzied Federated Parameter-Efficient Fine-Tuning
DPLCLIP [26] 3.80 3.70 85.72±1.84 85.69±3.49 83.84±1.22 63.23±0.21 79.62±1.24

FedTPG* [14] 5.65 3.76 83.71±0.39 83.45±2.09 84.05±0.76 65.95±2.66 79.29±0.44

FedAPT [16] 3.87 3.74 84.47±0.70 86.19±0.98 83.07±0.64 67.19±0.62 80.23±0.22

FedPGP [7] 3.55 4.00 84.85±1.18 88.75±2.09 85.80±1.34 71.98±0.22 82.84±0.86

FedOTP [12] 3.56 4.05 85.61±0.57 87.92±4.05 83.90±2.08 68.14±2.01 81.39±2.04

FedDAT [3] 2.59 3.69 86.53±0.81 84.83±1.04 86.25±1.31 74.90±0.59 83.13±0.35

pFedST (Ours) 2.32 2.98 84.50±0.57 89.5289.5289.52±1.65 88.7088.7088.70±0.43 75.1375.1375.13±0.13 84.4684.4684.46±0.35

Table 2: Performance of pFedST and 12 competing methods on FedDRG.
Method #Params Mem. FedDRG (AUC, %)

(M) (GB) A B C D E Avg
Fully-FT 86.19 5.55 87.14±0.76 90.81±0.88 87.78±0.42 89.64±0.50 82.44±0.76 87.56±0.33

Federated Parameter-Efficient Fine-Tuning
CLIP-Adapter [9] 3.67 3.69 89.12±0.37 88.99±0.27 86.59±2.32 88.51±1.45 81.39±0.94 86.92±0.86

CLIP-LoRA[25] 1.181.181.18 5.44 88.33±0.23 89.78±0.44 85.95±1.72 90.15±0.56 81.67±0.51 87.17±0.09

DTL+ [8] 1.29 3.02 87.45±0.51 90.28±0.79 87.82±0.55 89.34±1.06 81.52±0.77 87.28±0.25

LAST [17] 1.53 2.69 85.94±0.95 90.29±0.16 88.06±0.38 89.25±0.75 82.02±0.12 87.11±0.18

FedTPG [14] 5.65 3.76 89.01±0.83 89.42±0.35 88.35±0.84 88.79±0.83 80.70±0.53 87.25±0.17

Personalized Federated Parameter-Efficient Fine-Tuning
DPLCLIP [26] 3.80 3.70 89.66±0.92 87.52±0.17 88.84±0.78 90.48±0.51 84.93±0.85 88.27±0.30

FedTPG* [14] 5.65 3.76 90.53±0.30 88.86±0.59 91.92±0.36 91.78±0.79 84.8984.8984.89±1.20 89.60±0.58

FedAPT [16] 3.87 3.74 91.02±0.21 89.47±0.05 91.34±1.03 92.49±0.16 83.40±1.44 89.54±0.33

FedPGP [7] 3.55 4.00 90.63±1.01 89.38±1.21 91.14±0.44 92.63±0.75 83.33±0.35 89.42±0.27

FedOTP [12] 3.56 4.05 90.81±0.17 90.12±0.05 92.43±0.22 93.17±0.71 84.22±0.37 90.15±0.06

FedDAT [3] 2.59 3.69 91.2191.2191.21±0.22 91.36±0.22 93.57±0.09 90.95±0.44 83.87±0.28 90.19±0.17

pFedST (Ours) 2.32 2.98 90.41±0.05 91.4091.4091.40±0.28 93.8393.8393.83±0.73 93.8193.8193.81±0.17 84.35±0.12 90.7690.7690.76±0.21

pFedST in addressing the challenges posed by data heterogeneity in federated
learning settings. For the FedISIC dataset, pFedST improved balanced accu-
racy on clients B, C, and D by 0.57%, 2.45%, and 0.23%, respectively, over the
second-best method. Additionally, pFedST increased the average performance
by 5.77% over the fully fine-tuned baseline and by 1.36% over FedDAT. For the
FedDRG dataset, pFedST demonstrated a 3.20% increase in average AUC over
fully fine-tuning and exceeded the second-best method by 0.57%. In terms of
computational efficiency, pFedST requires only 2.32 million training parameters
and 2.98 GB of GPU memory to fine-tune a model based on CLIP ViT/B-16.
This represents a reduction of 97.30% in the number of training parameters and
a 46.31% decrease in memory usage compared to fully fine-tuning. These findings
underscore the ability of pFedST to achieve state-of-the-art performance while
significantly reducing computational overhead.
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Table 3: Effect of personalized LoRA
placement. ‘Proj’ includes both down-
projection and up-projection.

Personalized Weight FedISIC (BACC, %)
Proj Q K V O A B C D Avg

84.64 89.22 81.77 58.94 78.64
✓ 82.80 88.33 83.54 67.92 80.65
✓ ✓ 84.07 85.42 86.45 70.19 81.53
✓ ✓ 84.9684.9684.96 84.78 85.19 71.06 81.50
✓ ✓ 84.47 91.1691.1691.16 86.29 72.56 83.62
✓ ✓ 84.50 89.52 88.7088.7088.70 75.1375.1375.13 84.4684.4684.46
✓ ✓ ✓ 84.39 95.50 85.58 69.66 83.78
✓ ✓ ✓ 81.95 89.04 85.25 71.46 81.93
✓ ✓ ✓ ✓ ✓ 83.69 85.55 85.06 69.87 81.04

Fig. 3: Effect of contrastive loss
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Fig. 4: Visualization of personalized LoRA parameters on FedISIC dataset

3.3 Ablation Study and Further Analysis

Effect of Personalized LoRA Adaptation. As shown in Table 3, we inves-
tigate the effects of applying personalized LoRA at different locations within
the model on FedISIC. Without personalized LoRA, the baseline model (row
1) achieved an average BACC of 78.64%. In contrast, introducing personalized
LoRA to the down-projection and up-projection weights (row 2) resulted in a
2.01% improvement in performance. Notably, personalizing the output projec-
tion weight WO with LoRA achieved the highest performance.
Effect of Contrastive Loss. We evaluated the impact of contrastive loss on
FedISIC and FedDRG datasets, as shown in Fig. 3. The results demonstrate that
introducing contrastive loss significantly improves both the average performance
across clients and the performance of most individual clients.
Visualization of Personalized LoRA. As shown in Fig. 4, we visualized the
personalized LoRA parameters for the output projection weight in the first self-
attention module on FedISIC. Clients C and D exhibited more concentrated
LoRA parameters than A and B, indicating that personalized LoRA effectively
captures data heterogeneity and enhances personalization on complex datasets.
Table 3 shows that adding personalized LoRA improved BACC by 1.70%, 1.19%,
5.16%, and 16.19% for clients A, B, C, and D, respectively. This highlights how
concentrated LoRA parameters adapt to diverse data and boost personalization.
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4 Conclusion

We propose pFedST to address data heterogeneity and memory inefficiency in
personalized federated PEFT across multiple medical centers. Built upon the
large vision-language model CLIP, pFedST introduces a personalized side net-
work for each client and employs a parameter-efficient fine-tuning strategy to
adapt the frozen CLIP model to the local client data. This enables more ef-
fective modeling of client-specific characteristics. Extensive experiments demon-
strate the consistent superiority of pFedST across two real-world multi-center
medical image classification tasks.
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