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Abstract. Existing medical image representations are typically pro-
cessed into grid or sequence structures via Convolutional Neural Net-
work (CNN) or Vision Transformers. However, these methods struggle to
flexibly capture irregular lesion regions and reveal relationships between
lesions, especially in 3D medical imaging. To address this, we trans-
form medical images into graph structures and propose MedGNN, a
general recognition network based on Graph Neural Network (GNN) vi-
sual representations. We first segment the image into patches and treat
each patch as a node, constructing graph visual embeddings via the K-
Nearest Neighbor algorithm. Then, we propose multi-scale dynamic max-
relative graph convolution for feature aggregation and updating. To miti-
gate over-smoothing in graph models, we design a feature-enhanced feed-
forward network to refine feature representations. Experiments show that
MedGNN achieves strong competitive performance across various 2D and
3D medical image recognition datasets. Moreover, it visualizes lesion rela-
tionships through graphs, enabling interpretable analysis based on graph
structures. Code is available at: https://github.com/IMCTGD/MedGNN.

Keywords: Graph structure · Graph neural network · Medical image
recognition · Interpretability.

1 Introduction

Voxel-based models on the basis of Convolutional Neural Networks (CNNs) [14]
and Vision Transformer [3] are common deep learning paradigms in the medical
imaging field, such as structural magnetic resonance imaging (sMRI) [27]. CNNs
conceptualize medical images as collections of voxels arranged in rectangular
forms, extracting local features through convolutional operations. In contrast,
Transformers model global dependencies through self-attention, capturing long-
range spatial and contextual information. Recently, Mamba [5] leverages a state-
space model (SSM) to dynamically capture spatio-temporal features through a
selective state mechanism, forming a hierarchical representation of medical image
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inputs. Unlike natural images, the irregular and non-adjacent nature of lesion
regions limits grid- or sequence-based representations in modeling their structure
and relationships, which are essential for recognizing degenerative brain diseases.

Graph structures, as a general data representation, offer a potential solution
to these challenges [11,13]. They can flexibly model complex objects and capture
the relationships between node features, providing strong interpretability. Wang
et al. [23] proposed a graph matching framework combining deep learning and
combinatorial optimization, encoding graph structures into high-dimensional
embeddings through neural networks to achieve high-accuracy image match-
ing and semantic alignment. Han et al. [6] introduced the Visual Graph (ViG)
model for extracting graph-level features in visual tasks, representing images as
graph structures. Graph-based data also finds extensive applications in medical
image analysis. Li et al. [16] developed BrainGNN, a graph neural network-based
framework for functional magnetic resonance imaging (fMRI) analysis, mapping
regional and cross-regional functional activation patterns for classification tasks.
However, current graph-based analysis methods are mainly applied to temporal
medical images like fMRI, which do not directly include high-resolution brain
anatomy. Applying graph structures to anatomical imaging data, such as sMRI,
generated from 3D spatial sampling remains a complex challenge.

To address the above issues, we propose MedGNN, a general recognition net-
work for medical image analysis on the basis of GNN visual representations.
First, 3D medical images are segmented into equal-sized patches, which are
treated as nodes and processed into a graph structure via K-Nearest Neighbor,
forming GNN-based visual embeddings (GVE). Then, we introduce multi-scale
dynamic max-relative graph convolution (MGC) for feature aggregation and up-
dating. Simultaneously, we design an extended deformable convolution (EDG)
for multi-scale dynamic feature optimization. Finally, we propose a feature-
enhanced feed-forward network (FFFN) to alleviate over-smoothing in the graph
model and further optimize the data.

Our contributions are as follows: (1) We propose MedGNN, a general
recognition network for medical images on the basis of graph neural network
visual representations. MedGNN applies graph neural networks to complex 3D
medical image recognition tasks, offering model interpretability that differs from
traditional visual representations. (2) We introduce multi-scale dynamic max-
relative graph convolution and feature-enhanced feed-forward network for med-
ical visual representation, achieving dynamic feature optimization and enhance-
ment. (3) MedGNN achieves competitive performance on 2D/3D medical image
recognition tasks across diverse benchmarks, compared to leading models.

2 Method

In this section, we extend vision GNN techniques to the medical imaging and
propose MedGNN, a GNN model for general visual representation in medical
images. The overall structure is illustrated in Fig.1. For clarity, we illustrate the
model design via 3D medical images.
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Fig. 1. Overall framework of MedGNN. (a) Overall structure, (b) MGC, (c) FFFN.
The medical image input is segmented into patches, with graph-structured embeddings
built via GVE. Feature aggregation and updating are then performed through MGC.
Finally, the FFFN further smooths and enhances the features.

2.1 GNN-based Visual Embedding (GVE)

The function of GVE is to construct a graph-structured 3D visual embedding
for medical imaging. For a medical image input X ∈ RH×W×D×C , we partition
it into N patches by configuring the stem module of ConvNeXt [18]. X is then
represented as X = [x1,x2, · · · ,xN ], where xi ∈ RD denotes the voxel features of
each patch. Subsequently, we treat the feature xi of each patch as a node vi and
identify the k nearest neighbors N (vi) via K-Nearest Neighbor. Meanwhile, we
establish an edge eij from each node vi to vj , resulting in a graph representation
G = (V, E), where E denotes the set of edges. The process of graph construction
is represented by G = G(X). For 3D medical images, calculating the distance
between nodes involves extensive voxel interactions. KNN reduces computational
complexity by focusing only on the k nearest neighbors of each point. Hence, we
choose KNN to compute the distance relationships between nodes.

2.2 Multi-Scale Dynamic Max-Relative Graph Convolution (MGC)

Since the relationships between lesions are not simply on the basis of adjacency,
we propose MGC (Multi-scale Graph Convolution) for multi-scale feature ag-
gregation and update, enabling more comprehensive exploration of node (i.e.,
lesion) relationships. MGC can be divided into two steps: Aggregate and up-
date, which involve aggregating features from neighboring nodes and updating
the node representation with the aggregated feature:

G′ = Update (Aggregate (G,Wagg) ,Wupdate ) , (1)



4 Ye et al.

here, Aggregate(·) denotes feature aggregation, Update(·) represents feature up-
date, Wagg and Wupdate correspond to the weights of aggregation and update,
respectively. Specifically, assuming N (xi) is the set of neighboring nodes for a
given node, the feature update process for that node can be expressed as:

x′
i = Update (xi,Aggregate (xi,N (xi) ,Wagg) ,Wupdate ) . (2)

Aggregate: We employ max-relative graph convolution [15] as the feature
aggregation method due to its flexibility in adapting to irregular graph structures
and its efficiency in capturing relative relationships between neighboring nodes
and the central node:

Aggregate(·) = x′′
i = [xi,max ({xj − xi | j ∈ N (xi)})] , (3)

here, xj represents the features of neighboring nodes of node i, and [·] denotes
the concatenation of two vectors.

Update: To achieve multi-scale dynamic feature updates, we design an Ex-
tended Deformable Convolution (EDC) on the basis of feature linear mapping,
adapting to the diverse data characteristics of medical images and recognizing
lesion boundaries. This process can be expressed as:

Update(·) = x′
i = α

∑
ki∈Kl

W ki
L ·x′′

i (pks)+(1−α)
∑

kd∈Kd

W
kd
D ·x′′

i (p0 + pkd +∆pkd) , (4)

here, WL and WD represent the weights of the linear mapping and deformable
convolution [2], p0 denotes the center point location, pk is the sampling position,
and ∆pk is the dynamic offset. Notably, we employ convolutional kernels of
varying sizes kd for multi-scale feature updates. Additionally, we introduce a
weighting coefficient α ∈ [0, 1] to perform a weighted fusion of the two feature
components, balancing the importance of different features.

2.3 Feature-enhanced Feed-forward Network (FFFN)

Inspired by the FFN [3] in Transformer, we design FFFN to mitigate over-
smoothing in graph models and further enhance data augmentation. Specifically,
FFFN consists of PConv [1] and a gating mechanism. First, PConv is used to
perform a linear transformation on the input feature X′ ∈ RH×W×D×C , followed
by a linear projection via the weights W1:

X̄ ′ = GELU (W1P Conv (X ′)) , (5)

here, GELU(·) represents the GELU activation function. Then, X̄ ′ is decom-
posed into X̄ ′

1 and X̄ ′
2 along the channel dimension, with local features extracted

through depthwise convolution (DWConv):

X̄ ′
r = X̄ ′

1 ⊗ F
(
DW Conv

(
R
(
X̄ ′

2

)))
, (6)

here, R(·) and F (·) represent the reshape and flatten operations, respectively,
while ⊗ denotes matrix multiplication. Finally, X̄ ′

r undergoes linear projection
via the weights W2, followed by the GELU activation function to obtain the
output feature X̄ ′

out . We add FFFN at each node, combining it with MGC.
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3 Experiment and Results

The 3D medical image datasets are sourced from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) 4, Open Access Series of Imaging Studies (OA-
SIS) 5, and Autism Neuroimaging Data Exchange I (ABIDE I) 6. ADNI includes
446 AD subjects, 450 HC subjects, and 493 MCI subjects. OASIS includes 196
subjects are selected, including 105 AD subjects and 91 HC subjects. ABIDE
I includes 78 autism spectrum disorder (ASD) subjects and 78 HC subjects.
All datasets use T1-weighted imaging. The goal of this study is early
screening of patients, thus we use the first recorded sMRI data for
each subject. Preprocessing is performed via the open-source tool Computa-
tional Anatomy Toolbox (CAT12), with image size set to 112×128×112.

The 2D medical image datasets are sourced from SARS-CoV-2 7 and
Chest X-Ray Images (Pneumonia) 8. The SARS-CoV-2 dataset consists of CT
scans including 1,252 pneumonia patients and 1,229 non-pneumonia patients.
The size of each CT slice ranges from 119×104 to 416×512. The Chest X-
Ray Images (Pneumonia) dataset containing 5,863 chest X-ray images of
pneumonia and non-pneumonia patients.

Implementation Details. MedGNN and the comparison models in this
study are implemented via the PyTorch framework and trained and tested on
five 4090Ti GPUs. The learning rate is set to 1e-3, with the Adam optimizer
and a weight decay of 5e-2. The weight coefficient α in MGC is 0.9, and the
number of basic blocks follows the configuration 2:2:18:2. The parameter set-
tings for MedGNN are identical across both 2D and 3D datasets. For
more detailed parameters, please refer to the provided open-source code. The
performance metrics include accuracy and F1 score. Experimental results are
derived from five-fold cross-validation.

3.1 Experimental Results and Ablation Studies

Experimental Results. The experimental results are presented in Table 1 and
Table 2. It is important to note that the comparison models use the same param-
eter and structural configurations. For 3D medical images, MedGNN achieves
optimal performance across different datasets. Specifically, it performs best in
the AD vs NC (ADNI) task, with an accuracy of 0.911 and an F1 score of
0.911. It also delivers competitive performance in the AD vs HC (OASIS) task,
improving the accuracy by 0.052 and the F1 score by 0.059 compared to the
second-best model. For 2D medical images, MedGNN achieves optimal perfor-
mance in SARS-CoV-2 and Chest X-Ray Images (Pneumonia), with accuracies
of 0.947 and 0.849 and F1 scores of 0.947 and 0.784, respectively. However, it
does not show a significant advantage over the 3D medical image datasets.
4 ADNI.loni.usc.edu
5 http://www.oasis-brains.org
6 https://fcon_1000.projects.nitrc.org/indi/abide/abide_I.html
7 https://www.kaggle.com/datasets/plameneduardo/sarscov2-ctscan-dataset
8 https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia
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Table 1. Performance comparison of MedGNN with other recognition models across
various 3D medical image datasets, where ∗ indicates models derived from segmentation
task models, _ denotes the second-best result.

AD vs HC
(ADNI)

AD vs MCI
(ADNI)

AD vs HC
(OASIS)

ASD vs HC
(ABIDE I)

Model ACC F1 ACC F1 ACC F1 ACC F1

CNN-based
3D ResNet [8] 0.885 0.885 0.803 0.803 0.771 0.760 0.711 0.705
Biceph-Net [21] 0.819 0.816 0.747 0.745 0.704 0.712 0.605 0.603
DA-MIDL [28] 0.862 0.861 0.788 0.787 0.733 0.732 0.638 0.625
Gao et al. [4] 0.870 0.870 0.793 0.793 0.742 0.736 0.655 0.647
Xing et al. [25] 0.848 0.846 0.777 0.776 0.698 0.704 0.638 0.626

Transformer-based
Addformer [12] 0.865 0.864 0.778 0.777 0.723 0.720 0.644 0.635
VT-UNet* [19] 0.888 0.888 0.811 0.811 0.752 0.748 0.661 0.647
UNETR* [7] 0.883 0.883 0.801 0.801 0.733 0.728 0.661 0.644
M3T [9] 0.882 0.882 0.802 0.802 0.761 0.759 0.644 0.633

Other-based
Pointnet [20] 0.852 0.850 0.780 0.779 0.733 0.729 0.633 0.626
Segmamba* [26] 0.892 0.891 0.815 0.815 0.761 0.760 0.699 0.689
TransBTS* [24] 0.894 0.894 0.819 0.818 0.766 0.763 0.688 0.682

GNN-based
MedGNN (3D) 0.911 0.911 0.837 0.841 0.823 0.822 0.727 0.724
Improvement ↑1.7% ↑1.7% ↑1.8% ↑2.3% ↑5.2% ↑5.9% ↑1.6% ↑1.9%

Definition: AD (Alzheimer’s disease), HC (Healthy control), MCIc (MCI patients who
will convert to AD), and MCInc (MCI patients who will not convert to AD).

Ablation Studies. (1) The impact of the weight coefficient α in
MGC on experimental performance is shown in Table 3. When α=0.9,
the best performance is achieved in AD vs NC (ADNI), AD vs HC (OASIS), and
ASD vs HC (ABIDE I). Additionally, it yields the second-best accuracy and the
best F1 score in AD vs MCI (ADNI). (2) The impact of different stage con-
figurations on experimental performance is shown in Fig.2. We provide
four MedGNN models with varying stage configurations. Since [18] demonstrated
that a higher proportion of stacked blocks in stage 3 leads to better results, we
focus primarily on adjusting stage 3. The four MedGNN configurations are:
1:1:3:1 (MedGNN-T), 1:1:9:1 (MedGNN-S), 2:2:18:2 (MedGNN-B), and 3:3:27:3
(MedGNN-L). MedGNN-B and MedGNN-L consistently achieve optimal perfor-
mance across different tasks and can be selected based on the balance between
performance and computational requirements in practical scenarios.

Visualization Analysis. In this section, we provide a visualization of the
MedGNN graph structure. Fig. 3 illustrates the graphs of two samples from
stage 1 and stage 4 in both ADNI and SARS-CoV-2 datasets. The purple circle
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Table 2. Performance comparison of MedGNN with various recognition models across
different 2D medical image datasets.

SARS-CoV-2 Chest X-Ray Images
Model ACC F1 ACC F1

2D ResNet [8] 0.909 0.905 0.801 0.673
ConvNext [18] 0.919 0.917 0.814 0.693
Jangam et al. [10] 0.918 0.916 0.798 0.650
ViT [3] 0.934 0.934 0.805 0.668
Swin transformer [17] 0.942 0.942 0.835 0.748
Mamba [5] 0.939 0.939 0.807 0.668
MedGNN (2D) 0.947 0.947 0.849 0.784
Improvement ↑0.5% ↑0.5% ↑1.4% ↑3.6%

Table 3. The impact of the weight coefficient α in MGC on experimental performance.

AD vs HC
(ADNI)

AD vs MCI
(ADNI)

AD vs HC
(OASIS)

ASD vs HC
(ABIDE I)

α ACC F1 ACC F1 ACC F1 ACC F1

0.9 0.911 0.911 0.837 0.841 0.823 0.822 0.727 0.724
0.7 0.904 0.904 0.838 0.838 0.814 0.814 0.722 0.722
0.5 0.910 0.910 0.837 0.833 0.819 0.818 0.722 0.718
0.3 0.909 0.908 0.830 0.830 0.823 0.820 0.722 0.718

represents the central node, and the red connecting lines indicate the neigh-
boring nodes. Experimental validation leads to the following conclusion: as the
model depth increases, the neighbors of the central node become more semanti-
cally meaningful. In the ADNI dataset, the patch containing the node is more
strongly correlated with the functional features of the brain region of the cen-
tral node. According to AAL [22], we found significant graph connectivity fea-
tures in regions such as the rostral lingual gyrus (rLinG) and nucleus accumbens
(NAC), which show a high correlation with clinical findings. In the SARS-CoV-2
dataset, MedGNN demonstrates associations between lesions, such as ground-
glass opacities, across different regions, and to some extent, establishes semantic
connections within the graph structure for the same type of lesion.

4 Discussion and Conclusion

Advantages: (1) Since MedGNN does not rely on ROIs, it allows graph con-
struction without incorporating prior domain knowledge. (2) MedGNN is a
general-purpose backbone for medical imaging that can be directly applied to 2D
or 3D data without requiring complex structural modifications or adaptation. (3)
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Fig. 2. The effect of different stage configurations of MedGNN on performance.

Stage1 Stage4 Stage1 Stage4

AD vs NC(ADNI) SARS-CoV-2(a) (b) 

Fig. 3. An example of MedGNN’s graph structure visualization. The purple circle
represents the central node, and the red connecting lines indicate the neighboring
nodes. For clarity, only one central node is displayed.

MedGNN operates directly on voxels, eliminating the need for handcrafted fea-
tures and complicated data preprocessing commonly seen in conventional mod-
els. (4) Its multi-scale dynamic feature updating enables more effective capture
and representation of critical lesion-related information.

Limitations: Although MedGNN demonstrates highly competitive perfor-
mance, it still faces several issues. First, MedGNN performs poorly in medical
image segmentation tasks. Graph-based models primarily rely on node-level or
graph-level supervision, making it challenging to optimize for fine-grained seg-
mentation tasks. Second, the ability to capture fine-grained brain region features
remains insufficient. Despite the design of FFFN to mitigate excessive smooth-
ing in the graph model, some information loss still occurs during the extraction
of small-scale lesion/brain region features. In future work, we will optimize for
these issues and expand the model to more medical image datasets and tasks.

Conclusion: In this paper, we propose MedGNN, a general medical image
recognition network based on graph neural network visual representations. Un-
like current mainstream visual representation models, MedGNN divides images
into blocks and utilizes a graph structure for aggregation and updating, enabling
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flexible feature extraction. Additionally, we introduce a feature-enhanced feed-
forward network to mitigate excessive smoothing in the graph model, achieving
dynamic feature optimization and enhancement. Experimental results demon-
strate that MedGNN exhibits highly competitive performance on 2D and 3D
medical image recognition datasets and provides interpretable analysis through
the graph, revealing associations between lesions/brain regions.
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