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Abstract. Intraoperative X-ray imaging represents a key technology for
guiding orthopedic interventions. Recent advancements in deep learning
have enabled automated image analysis in this field, thereby streamlin-
ing clinical workflows and enhancing patient outcomes. However, many
existing approaches depend on task-specific models and are constrained
by the limited availability of annotated data. In contrast, self-supervised
foundation models have exhibited remarkable potential to learn robust
feature representations without label annotations. In this paper, we intro-
duce DINO Adapted to X-ray (DAX), a novel framework that adapts
DINO for training foundational feature extraction backbones tailored to
intraoperative X-ray imaging. Our approach involves pre-training on a
novel dataset comprising over 632,000 image samples, which surpasses
other publicly available datasets in both size and feature diversity. To
validate the successful incorporation of relevant domain knowledge into
our DAX models, we conduct an extensive evaluation of all backbones on
three distinct downstream tasks and demonstrate that small head net-
works can be trained on top of our frozen foundation models to success-
fully solve applications regarding (1) body region classification, (2) metal
implant segmentation, and (3) screw object detection. The results of our
study underscore the potential of the DAX framework to facilitate the
development of robust, scalable, and clinically impactful deep learning
solutions for intraoperative X-ray image analysis. Source code and model
checkpoints are available at https://github.com/JoshuaScheuplein/DAX.
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1 Introduction

Medical imaging plays a crucial role in modern healthcare, enabling the diagnosis
and treatment of various conditions [24]. In the field of orthopedic interventions,
intraoperative X-ray imaging stands out because of its widespread accessibility,
cost-effectiveness, and the ability to provide real-time visualization of anatomical
structures [1]. However, the automated analysis of intraoperative X-ray images
remains challenging due to the diverse range of imaging protocols, variability
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in patient anatomy, and the presence of artifacts [27]. In recent years, deep
learning has emerged as a promising technique for developing advanced image
analysis algorithms that address these limitations [5|. Nevertheless, several chal-
lenges persist, including the limited availability of training data, variations in
input, problems with context understanding, and the fact that most models are
designed for specific tasks only [21].

Given this context, foundation models have seen increased usage in this area
to acquire general domain knowledge that can be subsequently reused for a va-
riety of downstream tasks with minimal additional fine-tuning [2]. For instance,
Kirillov et al. introduced the Segment Anything Model (SAM) for generating
object segmentation masks in a given image based on various segmentation
prompts [12]. While the original SAM model primarily targets real-world im-
ages, it has been frequently adapted for medical images, such as MedSAM [16].
In general, existing literature indicates a shift towards adapting natural domain
foundation models explicitly for medical imaging applications, given their often
limited transferability [3,9]. In the field of medical X-ray imaging, for instance,
Shakouri et al. developed DINO-CXR 22|, which is primarily trained on chest
X-ray (CXR) data. However, chest and other radiological X-ray images do not
capture the same feature content as intraoperative scans that are commonly
used in orthopedic procedures. The latter exhibit greater variability across body
regions and less strict standard views than diagnostic imaging, while introducing
additional complexity due to diverse implant types and imaging characteristics,
such as increased scatter radiation [27].

Therefore, we propose DINO Adapted to X-ray (DAX) that translates
the capabilities of the so-called knowledge distillation with no labels (DINO)
framework to the domain of intraoperative X-ray imaging. DINO [4] and its
revised version, DINOv2 [18], represent self-supervised training methods that
are particularly well-suited for the domain of medical imaging, where label an-
notations are typically scarce. Our pre-training dataset exceeds the scale and
feature diversity of publicly available datasets, such as MIMIC-CXR, [11] and
CheXpert [10]. We pre-train several backbone architectures, including residual
networks (ResNets) [8] and vision transformers (ViTs) [6] on this dataset with
DAX. Our findings demonstrate the capacity of these models to incorporate
meaningful domain knowledge, which can be used for solving clinically relevant
downstream tasks. We summarize our contributions as follows:

1. Dataset Collection. A comprehensive and diverse dataset comprising over
632,000 intraoperative X-ray images collected from different sources is used
for model pre-training.

2. Methodological Development. We adapt DINO for the field of intraoper-
ative X-ray imaging, incorporating domain-specific image preprocessing and
data augmentation strategies.

3. Model Training and Evaluation. Various backbone architectures are pre-
trained using the novel DAX framework and extensively evaluated on mul-
tiple downstream tasks including body region classification, metal implant
segmentation, and screw object detection.
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2 Materials and Methods

Dataset. The pre-training dataset for the DAX foundation models comprises
632,385 images in total. These originate from scans of human cadaveric speci-
mens as well as trauma and orthopedic surgeries, acquired using both fixed and
mobile C-arm systems. Table 1 summarizes the relative proportion of anatomi-
cal regions represented in the dataset. The category “upper extremities” includes
wrist, elbow, and shoulder scans; “lower extremities” cover foot, leg, and pelvis.

Table 1. Body region distribution in the pre-training dataset.

. Upper Lower

7 Tmages Broncho Spine Extremities | Extremities
Cadaver 514,577 0.0% 16.5% 39.2% 44.2%
Clinical 117,808 5.9% 33.7% 14.7% 45.7%
Total 632,385 1.1% 19.7% 34.7% 44.5%

DAX Pipeline. As illustrated in Figure 1, the development pipeline for our
foundation models adopts the student—teacher architecture from the original
DINO implementation, while introducing two distinct approaches to image pre-
processing and data augmentation specifically designed for intraoperative X-ray
imaging. In version A, intensity normalization, a negative logarithm transform,
and region-of-interest (ROI) normalization are first applied to enhance the con-
trast of the raw input images. This is followed by several image augmentation
techniques, including random cropping, flipping, color jittering, and Gaussian
blurring, to generate two global and multiple local crop images. In version B,
the intensity normalization and the negative logarithm transform are applied
at random with a probability of 0.5 to further increase data variability during
pre-training. Additionally, rotation is incorporated and the Gaussian filtering
operation is replaced with a sharpening function that randomly applies either
blurring or sharpening to the cropped images. Notably, we train all models from
scratch, without initializing them from any checkpoints pre-trained on ImageNet
or other public datasets.

Implementation Details. We train ResNet18, ResNet50, and both tiny as
well as small ViT architectures with either 16- or 8-pixel patch sizes using DAX.
All pre-training runs are conducted on 4 NVIDIA A100 GPUs, each equipped
with 80GB of RAM. Every foundational feature extraction model is pre-trained
on our custom dataset for 200 epochs using the AdamW optimizer, with a linear
warmup applied during the first 10 epochs and subsequent cosine annealing as
learning rate schedule. The global crops have a resolution of 244x244 pixels,
while the local crops are resized to 96x96 pixels. All computational operations
are executed with 32-bit precision and the total pre-training time ranges from
2d 22h for ResNet18 to 27d 14h for ViT-S-8.
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Fig. 1. Overview of the proposed DAX pipeline. (a) Initial and (b) modified image
preprocessing and augmentation strategy. (c) High-level architecture of the pre-training
method. (d) Overview of downstream tasks used for performance assessment.

Body Region Classification. In the first downstream experiment, we evaluate
the performance of all DAX backbones in a body region classification task. The
dataset consists of 2,941 annotated clinical images from intraoperative scans,
which are categorized into eleven different classes and not included in the pre-
training dataset. To qualitatively assess the high-dimensional feature embeddings
of our foundation models, we project them into a 2D space using the uniform
manifold approximation and projection (UMAP) method [17]. Additionally, we
conduct quantitative analyses through linear probing on the output encodings by
training a small head network comprising a single linear layer, using 5-fold cross-
validation with an 80/20 train/test split, without a separate held-out dataset.
The backbones remain frozen during this fine-tuning process and throughout all
the other downstream tasks.

Metal Implant Segmentation. Furthermore, we evaluate the foundational
feature extraction models on a metal implant segmentation task to assess their
ability to capture spatial information. The feature maps from ResNet and ViT
backbones are first upsampled to a resolution of 244x244 using bilinear inter-
polation. Subsequently, the concatenated feature maps are processed through a
pixel-wise convolutional layer followed by a sigmoid activation function to gen-
erate the final mask prediction. The dataset for this task consists of 300 clinical
images capturing various anatomical structures, with ground truth annotations
provided by human experts. As before, we employ 5-fold cross-validation without
a held-out set, using one fold for testing and the remaining folds for training.
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Screw Object Detection. In the third experiment, we evaluate the DAX
foundation models for object recognition and localization using a screw object
detection task. For this purpose, we adapt the sparse detection transformer
(Sparse DETR) framework, developed by Roh et al., and replace the default
feature extractor by our frozen DAX models [20]. A simulated dataset was gen-
erated based on 57 real-world cone-beam computed tomography (CBCT) scans,
covering seven different body regions, each comprising 400 single projection im-
ages. Additionally, 3D models of medical screws are projected into the 2D views
using DeepDRR [25,26], with three configurations per volume containing either
one, two, or three screw objects. The 171 available scenes are split in a 70/15/15
ratio for training, validation, and testing. Finally, we measure the detection
performance using the object keypoint similarity (OKS), as introduced in the
publicly available COCO dataset [13]. We set the screw keypoint constant s such
that an average deviation of 30 pixels - corresponding to the maximum occurring
screw width in the used projection images - between ground truth and predicted
keypoint locations results in an OKS of 0.5. This value represents the minimum
threshold at which a prediction is considered a match.

3 Results

Body Region Classification. Figure 2 shows the 2D UMAP embeddings of
all samples from the body region classification dataset obtained with a ResNet50
backbone at the beginning as well as the end of pre-training, respectively. Over-
all, clearly distinguishable clusters corresponding to different anatomical classes
emerge. Notably, the feature encodings enable differentiation not only of the
body regions but also of the perspectives, such as anterior-posterior (AP) or
lateral views, at which the images are acquired.

In Table 2, we summarize the quantitative results for the linear probing ex-
periment. The best ResNet architecture is ResNet50, which achieves an average
F1-Score of 65.95%, while ViT-S-8 excels with 97.79% for the same metric among
the ViT backbones. In particular, the latter ones show a good balance between
precision and recall, whereas ResNets tend to prioritize retrieving all relevant
samples, potentially leading to more false positives, as indicated by lower preci-
sion compared to recall values. The models trained with version B neither show
significantly improved nor degraded performance in comparison to the models
in version A. In summary, ViT architectures clearly outperform ResNets in this
downstream task.

Metal Implant Segmentation. The results for the metal implant segmenta-
tion task are reported in Table 3. ResNet50 demonstrates superior performance
compared to ResNet18 (mean DICE-Score of 94.10% vs. 91.78%) and exhibits
the highest metric scores among all foundation models. In general, ViTs show
competitive results to ResNet backbones in this case. It is noteworthy that the
performance of ViT-S models not consistently surpasses that of their ViT-T
counterparts, as measured by the average DICE-score. However, an increase in
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Table 2. Body region classification results obtained with 5-fold cross-validation.

Backbone Augmen-| Accuracy Precision Recall F1-Score
tation wto (%) wto (%) wto (%) wto (%)
ResNet18 | Version A | 73.78 + 0.84 | 60.85 + 2.82 | 73.82 + 0.85 | 64.93 + 0.92
ResNet50 | Version A | 75.00 &+ 0.48 | 59.49 + 0.38 | 75.05 = 0.48 [65.95 £+ 0.44
ResNet50 | Version B | 73.16 4+ 0.34 | 58.51 + 0.37 | 73.19 4+ 0.34 | 64.17 &+ 0.33
ViT-T-16 | Version A | 97.26 £ 0.40 | 97.31 £ 0.42 | 97.27 £ 0.40 | 97.24 £ 0.41
ViT-T-8 Version A | 97.26 4+ 0.71 | 97.32 4+ 0.68 | 97.27 + 0.70 | 97.24 + 0.72
ViT-S-16 | Version A | 97.67 £ 0.50 | 97.72 £ 0.51 | 97.68 £ 0.50 | 97.65 £ 0.51
ViT-S-16 | Version B | 97.50 £ 0.54 | 97.52 £ 0.55 | 97.51 £ 0.54 | 97.46 £ 0.56
ViT-S-8 Version A | 97.80 &+ 0.59 | 97.85 £ 0.57 | 97.80 &+ 0.59 {97.79 £+ 0.60

UMAP Embedding @ Epoch 1 UMAP Embedding @ Epoch 200

Elbow - AP

Elbow - Lateral .
Wrist - AP .
Wrist - Lateral

Spine - Lumbar - AP
Spine - Cervical - AP
Spine - Thoracic - AP

Lower Extremities - Knee - AP

e Lower Extremities - Knee - Lateral .
Lower Extremities - Ankle - AP

e Lower Extremities - Ankle - Lateral .

Upper Extremities -
Upper Extremities -
Upper Extremities -
Upper Extremities -

Fig. 2. UMAP projections for an untrained (left) and trained (right) ResNet50 back-
bone. Points are colored by body region class labels, which are not used for clustering.

resolution, achieved by reducing the patch size from 16x16 to 8x8 pixels, is found
to slightly enhance the segmentation performance. Similar to the previous task,
feature extractors from version B do not exhibit significant improvements or
degradations compared to version A models. For a visual interpretation, Figure 3
provides exemplary segmentation mask predictions of different DAX backbones
from version A.

Screw Object Detection. Table 4 summarizes the results of the third down-
stream task in terms of average precision (AP) and average recall (AR) according
to different OKS thresholds. Generally, smaller thresholds result in higher per-
formance scores. In this evaluation, we mainly focus on the mean AP (mAP) and
mean AR (mAR) metrics, which are computed as the average values for varying
OKS thresholds (0.50 to 0.95).
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Table 3. Metal implant segmentation results obtained with 5-fold cross-validation.

Backbone Augmen-| Accuracy Precision Recall DICE-Score
tation uto (%) wEo (%) uto (%) wEo (%)
ResNet18 | Version A | 99.39 + 0.07 | 91.57 4+ 0.99 | 92.55 + 0.80 | 91.78 4+ 0.72
ResNet50 | Version A | 99.57 + 0.08 | 94.26 4+ 1.03 | 94.17 £+ 0.54 |94.10 £ 0.75
ResNet50 | Version B | 99.46 4+ 0.07 | 93.53 + 0.63 | 93.80 £ 0.69 | 93.38 £ 0.61
ViT-T-16 | Version A | 99.27 £+ 0.12 | 90.09 + 0.78 | 90.80 4+ 1.33 | 90.12 + 0.69
ViT-T-8 Version A | 99.41 + 0.04 | 91.67 + 1.41 | 93.13 £+ 1.13 |92.09 + 0.73
ViT-S-16 | Version A | 99.28 4+ 0.08 | 91.03 + 0.81 | 91.29 4+ 1.53 | 90.76 + 1.20
ViT-S-16 | Version B | 99.34 £+ 0.03 | 91.66 + 0.60 | 91.39 4+ 0.54 | 91.32 + 0.48
ViT-S-8 Version A | 99.26 + 0.07 | 92.18 + 1.08 | 91.23 + 1.64 | 91.15 £+ 1.06
Input Image  Ground Truth ResNet18 ResNet50 ViT-T-16 ViT-T-8 ViT-S-16 ViT-S-8

%8 =5 %8 23 %203 &y 12203
£ £ £ £ £ £ £
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Fig. 3. Qualitative segmentation mask predictions of different backbone architectures
pre-trained with DAX for three randomly selected samples of the test dataset.

All foundation models appear to overestimate screw objects, as indicated
by higher mAR vs. mAP scores. In version A, ResNet18 and ResNet50 reveal
similar performance, while ViT backbones exhibit inferior outcomes compared
to ResNet architectures in general. Interestingly, ViT-S-8 achieves better results
than ViT-T-8, whereas this relation is not observed in ViTs with 16x16 patches.
Moreover, a reduction in patch size leads to enhanced detection performance
exclusively for ViT-S, but not for ViT-T models. The backbones trained with
version B show diminished mAP and equivalent mAR values, suggesting that
there are no significant advantages over version A.

4 Discussion and Conclusion

Our findings reveal substantial differences between different DAX foundation
models. ViTs achieve higher classification accuracy, while ResNet backbones per-
form better on segmentation as well as detection tasks. This contrast likely arises
because the attention mechanism enables ViTs to capture global context [14,19],
whereas ResNet architectures are strong in hierarchical feature extraction and
spatial localization [8,15].
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Table 4. Quantitative results for the screw object detection task.

Augmen-| Average Precision (%) Average Recall (%)
tation |0.50:0.95| 0.75 0.50 |0.50:0.95| 0.75 0.50
ResNet18 | Version A 88.6 88.1 94.3 91.7 91.4 95.6
ResNet50 | Version A 89.0 89.0 94.0 91.6 91.8 95.4
ResNet50 | Version B 87.5 87.5 93.6 91.5 91.9 95.4
ViT-T-16 | Version A 86.1 87.5 94.1 89.5 90.3 95.3
ViT-T-8 Version A 81.9 82.5 90.4 88.2 88.9 93.9
ViT-S-16 | Version A 83.6 84.2 93.7 88.7 89.0 95.3
ViT-S-16 | Version B 82.3 83.3 91.0 88.6 89.2 94.8
ViT-S-8 Version A 84.6 85.5 92.8 89.9 90.7 95.3

Backbone

Version A Version B
A L

" ResNet1s ResNet50 ViT-T-16 ViT-T-8 ViT-5-16 ViTs-8 | ResNet50 ViT5-16

Fig. 4. Qualitative screw keypoint predictions of different backbone architectures pre-
trained with DAX for three randomly selected samples of the test dataset.

Concerning data augmentation, models trained with version B exhibit either
slightly diminished or comparable performance metrics as those from version A.
Consequently, the latter version should be regarded as the preferred option.
Our hypothesis is that the inherent diversity of the pre-training dataset may
mitigate the impact of additional augmentation, despite the potential benefits
of such operations in consideration of the underlying domain [7].

We primarily associate DAX with intraoperative X-ray imaging since most
of the pre-training data originates from that domain. Therefore, the provided
checkpoints are intended for use with intraoperative data only. However, the
method itself could be applied to diagnostic or presurgical contexts as well.

Finally, our study is also subject to several limitations. First, the pre-training
dataset is imbalanced with respect to several attributes, including age, gender,
and body regions. Second, the evaluation is constrained to only three downstream
tasks, which may not encompass the full range of clinical applications. Third,
while frozen backbones offer computational efficiency and facilitate clearer in-
terpretation of their feature extraction capabilities, this approach might restrict
the overall model performance on specific downstream tasks.
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In conclusion, we introduce DAX to demonstrate the effectiveness of self-
supervised learning for pre-training foundation models in intraoperative X-ray
imaging, thus supporting previous findings on the potential of such methods [23].
The DAX framework not only facilitates the development of novel, task-specific
models but also effectively mitigates the challenges associated with the scarcity
of labeled data. In the future, we will conduct experiments with further data
augmentation techniques and a more extensive, balanced pre-training dataset.

Disclosure of Interests. As indicated by the affiliations, some authors were em-
ployees of Siemens Healthineers AG at the time of conducting this research. All other
authors have no competing interests to declare that are relevant to the content of this
article.
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