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Abstract. Artifacts and noise in low-dose CT images can degrade im-
age quality, potentially hindering accurate diagnosis. In recent years,
image-domain post-processing denoising methods have gained flexibility
by eliminating the need for raw data. However, clinical scanning condi-
tions vary widely, with most existing studies focusing on CT denoising
under fixed or known conditions. Moreover, obtaining paired CT data in
clinical settings is challenging, limiting the practical applicability of su-
pervised learning methods. To address these challenges, we propose the
self-supervised VQ-SCD, capable of denoising low-dose CT (LDCT) im-
ages under varying unknown scanning conditions using only normal-dose
CT (NDCT) training data. For the first time, VQ-SCD uses a discretized
codebook to approximate the distribution of LDCT features across var-
ious scanning conditions, enabling uniform characterization and denois-
ing of data from multiple scanning setups. Additionally, we design a
miniature diffusion model that uses up-sampled features as guidance to
enhance image details. Our method outperforms both supervised and
state-of-the-art self-supervised methods in terms of both quantitative
metrics and visual quality, with a test time of only 0.25 seconds per im-
age. Furthermore, training the model using only animal and phantom
data still results in excellent denoising performance on human data. The
code will be available at https://github.com/WHUSU/VQSCD.

Keywords: Low-dose CT - Denoising: Vector Quantization- Diffusion
model.

1 Introduction

High doses of ionizing radiation can damage tissue cells, potentially increasing
the risk of cancer. Reducing tube current can lower the radiation dose to gen-
erate LDCT images[3]; however, this often introduces noise and artifacts that
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degrade image quality, potentially affecting diagnostic accuracy. Image domain
post-processing allows for direct processing in the reconstructed image, facil-
itating broader application and adoption. Common image-domain techniques
include filtering[18], NLM|[20], and BM3D][7]. Recently, deep learning-based low-
dose CT denoising methods have shown notable success[11, 14, 17, 25]. Some su-
pervised learning approaches employ specific model architectures, analyze dif-
ferences between low-dose and normal-dose images, and adaptively tune hyper-
parameters and regularization terms to achieve optimal denoising outcomes for
known scanning conditions [29,9,1]. However, such models often rely heavily
on paired data, with simulated data frequently differing from real clinical data.
From an ethical perspective, the secondary radiation dose from repeated scans
can be detrimental to the patient. Additionally, unavoidable secondary respira-
tory motion causes discrepancies between consecutive images, complicating the
acquisition of a large volume of paired data. This challenge is further exacerbated
by the variability in clinical scanning conditions, such as dose, slice thickness,
and equipment, leading to significant imaging variations. Addressing these issues
requires minimizing data dependence while enhancing the model’s applicability.

Self-supervised denoising methods[21,12, 6,30, 24] have been extensively re-
searched for natural images, with training typically involving only noisy images,
primarily focusing on improving visual quality or high-level semantic features.
In contrast, the primary goal of low-dose CT image denoising is to reduce noise
while preserving critical diagnostic information. Ethical constraints complicate
the collection of LDCT data, but hospitals can readily collect a substantial num-
ber of retrospective NDCT images. Thus, using NDCT images for training is a
more practical and suitable approach. Given the complexity of CT imaging noise
characteristics, excessive noise suppression can lead to the loss of small lesions.
Although diffusion models have notable advantages in preserving image details
and textures [8,13,27], their high computational cost and prolonged inference
time limit their clinical applicability. Moreover, complex clinical scenarios require
the model to adapt to diverse scanning conditions, with significant variations in
image quality posing additional challenges for model robustness.

To address these challenges, we propose a self-supervised denoising frame-
work incorporating Vector Quantization (VQ) [23]. The method exclusively uti-
lizes NDCT images during training to achieve LDCT denoising under multi-
scanning conditions, with the VQ-SCD overview presented in Fig. 1. The VQ-
SCD framework comprises three principal components designed to enhance de-
noising performance. First, diverse noise patterns are generated through ran-
dom noise injection and geometric flipping of input images, simulating hetero-
geneous scanning condition distributions. Subsequently, a Vision Transformer
(ViT) model [2] extracts hierarchical features from both LDCT and NDCT im-
ages. These feature representations are constrained through Mean Squared Error
(MSE) loss minimization to ensure cross-condition feature consistency. The VQ
discretizes continuous features into codebook entries. Each encoded value cor-
responds to a codebook vector, enabling the replacement of original features
with their nearest codebook representations. By representing various domains
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Fig. 1. Overview of the proposed VQ-SCD, including the encoder, vector quantization,
decoder, and miniature diffusion model, which requires only NDCT for training to
achieve LDCT denoising for unknown scan conditions.

as consistent distributions through the combination of codebook vectors, our
model is able to describe and process heterogeneous data uniformly. Finally, a
miniature diffusion model enhances texture preservation through multilevel up-
sampling feature conditioning. This module iteratively solves maximum a pos-
teriori (MAP) estimation [34] by integrating diffusion model priors, achieving
detail-optimized reconstruction within 0.25 seconds per image. The model out-
performs both supervised and unsupervised methods in terms of quantitative
metrics and visual quality. The proposed method demonstrates adaptability to
complex multi-scanning scenarios while circumventing conventional data acquisi-
tion limitations, thereby offering an efficient and generalizable solution for LDCT
denoising.

2 Method

2.1 Encoder architecture

We utilize the ViT to encode features of LDCT images. As shown in Fig. 1,
the ViT encoder segments the input image into non-overlapping 16x16 pixel
blocks, which are then linearly mapped to embedding vectors. These vectors are
combined with positional encoding to construct a serialized representation of
the image. The input image, with size of 512x512, is divided into 1024 blocks
using a 32x32 grid. Each block is processed by the ViT encoder and converted
into a feature vector of dimension 768. To enhance robustness against variations
in dose and slice thickness, we employ a multilevel Gaussian noise injection
strategy for data augmentation in the training phase. Additionally, horizontal
and vertical flip operations are introduced to improve the adaptability of the
codebook to spatial transformations. Adding Gaussian noise is intended to en-
hance the encoder’s robustness to perturbations and promote the utilization of
the codebook, which serves a different purpose compared to adding noise in the
projection domain to simulate LDCT images [16, 31] for model training.
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2.2 Vector Quantizer module

The VQ module learns a codebook comprising N vectors, each encoding a d-
dimensional feature of the encoder’s input. The codebook is represented as a
purple vector in Fig. 2, e, es,e3...,e,. The original input image is processed
by the encoder to obtain a feature vector, denoted z.(z) in a blue vector. The
d-dimensional vectors of z.(x) are discretized to find the nearest e; in the code-
book. Discretization involves quantizing continuous high-dimensional features
into their nearest-neighbor codebook vectors, which effectively reduces data di-
mensionality and minimizes redundant information. Finally, z.(x) is replaced by
the nearest e; in the codebook and outputs z4(x).

2.3 Decoder module

The decoder progressively reconstructs the low-dimensional feature map to a
high-resolution 512x512. We design a miniature diffusion model to restore tex-
tures. Let y and x denote the output of the VQ model and the original normal-
dose CT, respectively. To preserve the original details of the LDCT images while
effectively removing noise, we expect z;_1 to obey the diffusion prior py and to
be guided by y;_; in its content. py can be calculated concerning Eq. (1).

po (-1 | @) = N (-1 1o (w4, ), Xp (w4, 1)), (1)

p(x¢—1|z¢) represents the reverse denoising process. g and ), are the mean and
variance [10]. We use the up-sampled feature maps as conditions to guide the
inverse process of the diffusion model, combining it with a priori iterations to
solve the maximum a posteriori distribution problem. x;_; satisfies the following
conditions:

arg min{”xt_l —ya® = X logpe(@t—ﬂft)} ) (2)
Tt—1

We introduce an adaptive trade-off coeflicient Ay = A - /& [15] (initial Ao =
0.08) to balance noise suppression and detail retention across diverse scanning
conditions and clinical requirements. Larger \; values enhance denoising efficacy
at the expense of potential detail loss. Our sampling strategy employs the DDIM
method [26], implementing differential step intervals: 20-step sampling for the
initial 400 iterations followed by 200-step intervals. This configuration optimizes
likelihood term influence through finer temporal sampling while effectively cap-
turing low-dose CT texture characteristics through interval adjustment.

2.4 Traning Losses

The proposed method employs a composite loss function composed of four com-
ponents: Ly;sg, which constrains the coded features of the input and output
images in the encoder; Leommit, with weight set to 0.1 [23], which constrains the
alignment of encoder outputs with the codebook in the VQ layer; Lg;fy, which
constrains the update of the predicted noise relative to the real noise in the
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Fig. 2. Comparison of results in different methods with [-100, 200] HU. Above the red
dotted line, the piglet representative slices are 10%, 25%, and 50% doses, listed from
top to bottom. Below the line, the phantom results are 10% dose, 5% slice, 25% dose,
and 0.625 mm, listed from top to bottom.

miniature diffusion model; and L.parbonnier, Which constrains that the decoder’s
output is aligned with the NDCT of the input, thus balancing denoising with
structure preservation. The final loss L;ytq; is expressed as:

L= LMSE + O~1Lcom’mit + Ldiff + Lchm'bonnier- (3)

3 Experiments

Datasets (1) Piglet Dataset [32]. CT data at 50% dose, 25% dose, and 10%
dose are applied to assess the denoising efficacy of various methods. (2) Phantom
Dataset. Human anatomy is replicated using phantoms that simulate the head,
manufactured by General Electric (GE), USA. This replication ensures that these
body phantoms exhibit x-ray attenuation properties during CT scans that are
very similar to those of the human body. GE equipment is used to acquire head
CT images at 10%, 25%, and standard doses. The GE scanning protocol is as
follows: head CT axial scan with a probe range of 40 mm and a scanning time
of 1 s; slice thicknesses are configured to be 5 mm and 0.625 mm. Images are
scanned at a standard resolution of 512x512. (3) 2016 Mayo Dataset. The dataset
described in [4] contains data from ten paired 25% low-dose and normal-dose
abdominal CT scans. To demonstrate the capacity for zero-sample migration of
our method, we select 3 mm low-dose slices for testing. Scanning conditions are
differed from those used in the training dataset.
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Table 1. Quantitative results of different methods on the Piglet dataset.

10% dose 25% dose 50% dose Time(s)
PSNR SSIM PSNR SSIM PSNR SSIM
Low-dose | 33.4423 0.8579 | 34.7077 0.8657 | 35.2169  0.9092 -
REDCNN | 35.8637 0.9198 | 36.4999 0.9216 | 36.3088 0.9381 0.1
CTformer | 35.7722 0.9054 | 36.3938 0.9154 | 36.8441 0.9354 0.2

FDDiff 36.2923  0.9115 | 36.4673 0.9285 | 36.7844  0.9345 2.5

Noise2Sim | 36.7517 0.9143 | 36.6136 0.9229 | 36.8953 0.9391 0.1
ZeroN2N | 35.3556 0.8669 | 35.7389 0.8782 | 36.1493  0.9012 20

Ours 36.9639 0.9290 | 36.7116 0.9337 | 36.9883 0.9469 0.25

Method

Table 2. Quantitative results of different methods on the Phantom dataset.

5mm, 10%dose 1mm, 25%dose .
Method PSNR SSIM PSNR s | Lime(s)
Low-dose 32.3618 0.8338 33.6624 0.8701 -
REDCNN 36.6297 0.9166 35.8066 0.9027 0.1
CTformer 37.2995 0.9216 35.2483 0.9164 0.2
FDDiff 37.3418 0.9231 35.8423 0.9166 2.5
Noise2Sim 37.0151 0.9176 35.1765 0.9078 0.1
ZeroN2N 34.7649 0.8368 35.1308 0.8807 20
Ours 37.9611 0.9262 36.1617 0.9173 0.25

Parameter settings All models were implemented in PyTorch and trained and
tested on an NVIDIA 4090 GPU. The dimensions of the codebook were set to
512 x 16384 [33]. The diffusion model’s noise scheduling increased incrementally
from le-6 to 2e-2, with an initial step count of 1,000. For the experiments with
piglets and phantoms, our model training process utilizes only the correspond-
ing NDCT images. For the experiments with Mayo data, the training dataset
includes NDCT images from piglets and phantoms but does not contain any hu-
man body images. The compared supervised models include REDCNN|[5], CT-
former[28] and diffusion-based method FDDIiff[27]. All supervised methods used
fully paired normal-dose and low-dose training data. Self-supervised methods,
such as Noise2Sim|[22], and ZeroN2N[19], are also included, with training con-
ducted solely on low-dose data. Hyperparameters of the deep learning methods
followed the configurations in the original publications or official open-source
code. Standard CT quality evaluation metrics, such as SSIM and PSNR, are
applied to quantitatively assess model performance.

Performance Comparison on Piglet Dataset. As shown in Figure 2, su-
pervised methods effectively remove noise; however, they result in the blurring
of fine structures and loss of information, especially pronounced when noise lev-
els are high. CTformer also shows flocculation artifacts and poor visualization
quality. FDDiff shows effective denoising ability, but introduces more streaks
and dot artifacts at the 10% dose level. ZeroN2N preserves more image detail
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Fig. 3. The left side of the red dashed line displays 3mm Mayo2016 results [-100,
200] HU, arranged from top to bottom as follows: normal dose (a), low dose (b), and
denoising results (c). The right side presents the miniature diffusion model ablation
experiments: (d) LDCT, (e) without diffusion model and (f) with diffusion model.

and texture, but its denoising effectiveness is limited, with noticeable residual
noise. Noise2Sim demonstrates improved denoising without excessive smooth-
ing, showing finer details in the 10% and 50% slices; however, blurring in the
central region remains prominent at 25% dose, with significant loss of detail and
edge information. Our proposed method, trained exclusively on NDCT images,
demonstrated effective denoising across dose levels, providing clear image details,
minimal blurring, and preserved contrast. As shown in Tab. 1, our approach out-
performs the compared models in the testing metrics under varying degrees of
LDCT conditions. Our method is 10 times more efficient when compared to
diffusion-based methods.

Performance Comparison on Phantom Dataset. As shown in Figure 2
below the red line, the supervised method exhibit some denoising on slices of
varying thickness, but the CTformer still introduced sandy artifacts. FDDiff
demonstrated better denoising and preserved details on the 25% dose, 0.625 mm
slices; however, the overall visualization is blurrier on the 10% dose, 5 mm slices,
with a reduction in contrast, potentially affecting diagnostic assessment of the
head slice. Noise2Sim exhibited a little blurring, with poorer visualization on
both slices and loss of edge features. ZeroN2N demonstrated limited denoising,
though contrast is largely maintained. Our method achieved effective denoising
under scanning conditions of unknown thickness and dose, with image texture
most similar to that of normal-dose slices, clear contrast, and no blurring of
edges or details. As shown in Tab. 2, our method outperforms the compared
supervised and self-supervised methods on testing metrics under two different
scanning strategies.
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Zero-Shot Generalization to Human Datasets. Figure 3 illustrates the
denoising results on the Mayo dataset, and the training process of our method
uses only NDCT images of piglet and phantom data. This dataset has a slice
thickness of 3 mm, and the scanning device differs from that used in our training
data. Thus, this task involves unknown device specifications, dose levels, and slice
thickness. Our method demonstrated consistently high-quality denoising results:
zoomed-in regions retained clear texture, edges showed no blurring artifacts,
and the overall images introduced no additional artifactual noise. However, we
observed a loss of contrast in some features, including enhanced blood vessel
regions. We hypothesize that this is due to the lack of enhanced images in the
training data and significant imaging differences between devices, contributing
to reduced performance in enhanced regions.

Ablation Study. (1) Miniature diffusion model. As illustrated in Fig. 3, three
CT slices with detailed zoom-ins are presented to the right of the red line: the
first column shows the original low-dose CT slice, the second shows the denoising
result without the model, and the third shows the result with the model. The
results indicate that the VQ approach is unable to restore detailed features, and
the overall image exhibits arrow-like artifacts. Upon incorporating the miniature
diffusion model, the image detail improves significantly, and the arrowhead-like
artifacts are eliminated. We posit that due to the rich high-frequency detail in
the original slices, it is challenging to fully restore all details using only the VQ
approach. Therefore, we incorporate the diffusion model in the subsequent up-
sampling of the VQ results, using features from all levels of the up-sampled data
as priming conditions to retain detailed features effectively. (2) The dimension
of codebook. We investigated the impact of codebook dimensionality on per-
formance by conducting ablation experiments using 1mm, 25% low-dose model
data. When the codebook dimension was set to 1024, the PSNR and SSIM val-
ues were 36.1171 and 0.9276, respectively. In contrast, when the dimension was
reduced to 512, the PSNR and SSIM values are 36.1617 and 0.9173, respectively.
The 512-dimensional configuration required 662 MB fewer parameters than the
1024-dimensional configuration, which required 697 MB. These results suggest
that the dimensionality of the codebook has a little impact on the experimental
outcomes.

4 Conclusion

We propose the self-supervised vector quantization LDCT denoising model, while
only utilizing NDCT for training. We employ vector quantization learning to ap-
proximate the diverse features of low-dose images under varying scanning condi-
tions. The proposed miniature diffusion model, guided by the up-sampled feature
map and prior diffusion model information, effectively restores image details and
maintains denoising efficiency without reducing sampling steps, achieving a test
speed of 0.25 seconds per image. We have conducted a comprehensive set of
experiments using existing public data, our method outperforms supervised and
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state-of-the-art self-supervised methods in quantitative metrics and visual qual-
ity. Training on phantom and animal data alone enables effective noise removal
on human data across varied equipment, dose, and slice thicknesses.
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