‘ 1is MICCAI paper is the Open Access version, providec

MICCAI :

Source-Free Domain Adaptation for
Cross-Modality Cardiac Image Segmentation
with Contrastive Class Relationship Consistency

Ao Ma''?™, Qingpeng Zhu', Jingjing Li?, Mads Nielsen*, and Xu Chen®5

! School of Computing and Artificial Intelligence, Southwestern University of
Finance and Economics, Chengdu, China
2 Kash Institute of Electronics and Information Industry, Kashi, China
3 School of Computer Science and Engineering, University of Electronic Science and
Technology of China, Chengdu, China
4 Pioneer Centre for Al, Department of Computer Science, University of
Copenhagen, Copenhagen, Denmark
5 Department of Medicine, University of Cambridge, Cambridge, UK
5 Digital Environment Research Institute (DERI), Queen Mary University of
London, London, UK
aogel1993Chotmail.com

Abstract. This paper investigates source-free domain adaptation for
cross-modality cardiac image segmentation. Source-free domain adapta-
tion (SFDA) leverages a pretrained model from source domain knowl-
edge and adapts it using target domain data to predict target image
labels. While existing SFDA methods have demonstrated strong per-
formance in various medical segmentation tasks, cross-modality cardiac
segmentation remains challenging due to significant domain discrepancies
between MRI and CT modalities, hindering effective knowledge trans-
fer. Current SFDA approaches primarily focus on pseudo-label denoising
through image-level and feature-level alignment, often overlooking class-
level information derived from classifier outputs. This paper proposes a
novel framework that constructs two class relationship matrices using
predictions from a teacher-student model. These matrices are integrated
into a contrastive learning framework through intra-view and inter-view
pairs. The teacher-student architecture processes both original samples
and their augmented counterparts, enforcing prediction consistency for
robust adaptation. Simultaneously, our class-aware contrastive learning
enhances discriminative capability for cardiac structures. Experimental
results demonstrate that our method outperforms state-of-the-art ap-
proaches by significant margins, particularly on the challenging CT —
MR adaptation task.
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1 Introduction

Deep learning has demonstrated remarkable success across various domains,
ranging from computer vision [8/I5] to natural language processing [18]. How-
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ever, its performance heavily relies on the availability of large-scale annotated
datasets, which are often costly and time-consuming to acquire. For medical
images, despite the absence of annotations, domain shifts [I3l2] caused by vari-
ations in imaging protocols, scanners, or institutions make label prediction even
harder under i.i.d condition. Unsupervised Domain adaptation (UDA) [12I63]
emerges as a promising solution to address this challenge. By leveraging knowl-
edge learned from a source domain with abundant labeled data, domain adapta-
tion techniques enable the transfer of learned representations to a target domain
with limited or no annotations.

Source-free domain adaptation (SFDA) [IIT44] extends UDA by remov-
ing the need for direct access to source domain data during adaptation, relying
solely on a pre-trained model. This setting is particularly advantageous in med-
ical image segmentation, where data-sharing restrictions prevent access to raw
source data due to privacy concerns. Without source data, the model cannot
explicitly correct domain shifts by comparing distributions, making it harder to
identify and mitigate discrepancies between the source and target domains. Con-
sequently, SFDA methods must rely on more sophisticated strategies to extract
meaningful supervision from the target domain alone, ensuring robust adapta-
tion despite the absence of direct source-target alignment.

A classic SFDA methodology for medical image segmentation is pseudo label
denoising [A200T0I22IT7] which has evolved significantly over time. [4] pioneered
a creative pseudo-label denoising strategy in their work DPL, which inspired a
wave of subsequent research in this area. Following this, [20] introduced U-D4R,
proposing class-dependent thresholds for coarse pseudo-label selection and an
uncertainty-rectified label soft self-correction mechanism for further refinement.
Later, CPR [10] designed a pseudo-label refinement scheme based on context
similarities to enhance label quality. [I7] proposed CBMT, which leverages a
teacher-student framework and a well-designed calibration loss to enforce robust-
ness. These works achieve great performance on cross-modality fundus images
and abdominal organ images, reaching a level close to human expertise. How-
ever, among publicly available datasets, cardiac images are still very difficult to
be segmented under source-free setting.

The challenge of cross-modality cardiac image segmentation is caused by
domain discrepancy between MRIs and CT images. Visually, the contrast ra-
tio of CT images is lower than MR images, which means the foreground and
background are deeply mixed up, making it difficult for CNN models to learn
discriminative features especially on CT — MR tasks. Mainstream methods for
cardiac image segmentation are image reconstruction [3J2I] and introducing aux-
iliary knowledge [IIT9123]. The former one leverages CycleGAN [3], fourier style
mining [2T] to generate modality-like images for training, which essentially miti-
gates the difference between MR and CT images. The later one introduces prior
knowledge like class-ratio [I], visual prompt [19] and MedSAM [23] for image
segmentation. For image reconstruction way, we argue that the generated im-
ages lose image information during transformation more or less. Besides, it is
still difficult for CNN model to learn discriminative features when transforming
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Fig. 1: An overview of our work. Better viewed in color.

MR images into CT-like images. Meanwhile, introducing auxiliary information of
target domain [I[23] somehow changes the unsupervised source-free setting into
weakly-supervised one, which is hard to accomplish in real-word applications.

Motivated by recent advancements in contrastive learning methods [22/7],
we propose a novel contrastive learning framework that incorporates class-aware
relationships to enhance the model’s discriminative capabilities. We adopt a
teacher-student model that utilizes both original and augmented samples as
inputs to ensure model stability [I7]. We refer to the raw images and their aug-
mented counterparts as view 1 and view 2, respectively. The teacher and student
classifiers generate distinct predictions based on these two views. We utilize these
predictions to construct two class relationship matrices, selecting both diagonal
and non-diagonal elements to form intra-view and inter-view positive and neg-
ative pairs embedded within a contrastive learning framework. Unlike existing
SFDA methods, our contributions are threefold: First, we introduce a novel con-
trastive learning framework that emphasizes class relevance without necessitat-
ing the calculation of centroids [7] or prototypes [22] based on source classifiers.
Second, we fully leverage data augmentation within the teacher-student model,
not only to enhance model robustness but also to provide diverse views for con-
structing positive and negative pairs that improve discriminability. Third, our
approach enhances existing denoising schemes by utilizing all soft predictions
rather than discarding poor ones, thereby preventing information loss. The code
is available at https://github.com/aoge1993/SFDA-CCRCI.

2 Method

The source domain is denoted as Dy, = { X, Ys}, consisting of Ny training sam-
ples x; and their corresponding labels y, € {0, 1}7*WxC where H, W, and
C represent the image height, width, and the number of classes, respectively.
In contrast, the target domain, Dy = { X4, Y;}, comprises IV; unlabeled samples,
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with Y; remaining unknown. Both domains share an identical label space. Un-
der the source-free setting, the labeled source data is exclusively employed to
initialize the target model, with subsequent learning relying solely on the target
domain. Additionally, we define the augmented target samples as X;, which are
obtained through standard data augmentation techniques such as random era-
sure, contrast modulation, and the introduction of impulse noise. Motivated by
famous contrastive learning framework [24], we take original x; and augmented
x; as different views of images. Figl[I] presents the overview of our work.

2.1 The Teacher-Student Segmentation with Pseudo Labels

First, the backbone network is trained with labeled source data D with a vanilla
cross-entropy loss as follows:

I%Z)n Ly = Ex,yNDs Z Lee (y57 5’5) (]‘>

In Eq.7 Vs is the pixel-wise softmax output of the network. 6y represents
the network parameters. L. is a standard cross-entropy loss.

After being initialized with 6y, the student model is further trained with
augmented samples and pseudo labels. Specifically, for each target sample x;
and its corresponding augmented X;, the teacher model takes x; as input and
obtains softmax prediction v, the student model utilizes X; and gets u. We set
a threshold € = 0.75 to transfer the soft predictions v into hard labels y with
Vx = [[v¥ > €] where I is the indicator function. v* and y are the k-th dimension
of v and y, respectively. For instance, k € {0,1,2,3,4} for the cardiac dataset
(category 0 represents background). Then, we form a binary cross-entropy loss
with the hard label ¥ and the soft predictions u to train the student model as

Lseg = Exnp, )_[Jlog(u) + (1 = §)log(1 - w)). (2)

In Eq.7 a basic teacher-student model has been established. However, hard
labels selected by the threshold-based filter is coarse and inaccurate, thus further
refinement is necessary.

2.2 Contrastive Learning with Class Relevance

Generally, u and v € RE*H>XW are the softmax predictions of the two classifiers
(the last FC layer of decoders). For simplicity, we abuse u and v as vectors
with size C' x 1. As shown in Fig[[] we construct two class relevance matrix
M; = uv' and My = uu” to describe the class-wise relationship of different
views (the original and augmented samples). Then, we define the contrastive
learning loss as follows

H(XP My
Ecl — IOg - (Zz:l 1, ) ) (3)
HO Mg+ HO M) +  HO M)
i=1 i#i i

the positive pairs  inter-view negative pairs intra-view negative pairs
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In Eq.(3), H() = exp()/T where exp() denotes exponential function and
7 = 0.07 is the temperature parameter. Eq. consists of three components:
the diagonal elements of M; as (inter-view) positive pairs, the non-diagonal
elements of M; as inter-view negative pairs and the non-diagonal elements of
M, as intra-view negative pairs. The core idea of this contrastive loss is to push
away the negative pairs away from the positive pairs. Different from previous
contrastive learning works [722] focusing on feature-level alignment, we design
contrastive loss according to the class relevance of two different views.

Traditional contrastive learning methods emphasize pushing away positive
and negative samples at feature space. Further, our work considers class-wise
probability, which not only encodes the spatial coordinates of the pixel-wise
embeddings but also quantifies their probabilistic distribution within the la-
tent space, which directly corresponds to the confidence level of the semantic
attributes allocated to each representation.

2.3 The Teacher and Student Classifiers Consistency

To maintain robustness, we enforce the two classifiers of the teacher and student
models to be consistent. The consistency loss is defined as:

C C
Econ == Ewat( Z Ml,ij - Z Ml,ii)- (4)
=1

4,j=1

Considering a ideal situation that u = v with probability 1 for the predicted
class, L.on is equal to 0. Therefore, we minimize L., in Eq. to enforce the
teacher-student consistency. Note that Eq. partly includes terms of Eq., it
is still necessary to underline the consistency loss for model stability (details are
discussed in ablation study).

Finally, our overall loss during the target adaptation phase is

r%in Eseg + Olﬁcl + Bﬁcona (5>

where o = 1, § = 1 are trade-off parameters. 6, denotes the parameters of the
student model. Accordingly, the parameters of teacher model 0; are updated by
EMA strategy as 0y < \0; + (1 — \)f with A = 0.98.

3 Experiments

3.1 Experimental Settings

Dataset. We use the 2017 Multi-modal Whole Heart Segmentation Challenge
(MMWHS) dataset, which comprises images including 20 MRI and 20 CT vol-
umes from multiple clinical sites. Five categories of segmentation labels are for
each slice in the cardiac dataset, including left ventricle blood cavity (LV), left
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Table 1: Results on MR (source) — CT (target). The evaluation metric is 3D
DSC (%) and ASSD (vox). The best result is marked as bold.

method rce-fr DSC ASSD
CHROQ |SOUTCEE®l AA LA LV MYO Avg|[AA LA LV MYO Avg
NoDA - 67.4 66.2 69.2 37.0 60.0[17.1 7.7 14.1 11.0 12.4
Oracle - 91.9 88.3 91.0 85.8 89.2(3.1 34 3.6 22 3.0
SIFA [3] | x  |81.3 79.5 73.8 61.6 74179 62 55 85 7.0
DPL [4] v 72.8 77.2 61.5 60.2 67.9|8.1 7.2 75 88 7.9
CBMT [17]| v 72.2 77.5 67.2 66.3 70.8/6.6 7.9 7.0 7.1 7.2
FSM [21] v |84.9 616 77.9 67.3 72.9|10.410.2 7.8 53 8.4
AdaMI [1] v |83.1 782 745 668 75.7|5.6 4.2 5.7 6.9 5.6
FVP [19] v |85.6 719 79.5 64.0 75.3|9.0 9.0 44 35 6.5
CCG [9] v 74.2 74.3 69.1 63.5 70.3|4.9 54 6.5 85 6.3
ours | v [84185.685.2 61.8 79.2|7.2 9.5 3.0 3.3 538

atrium blood cavity (LA), the myocardium of the left ventricle (MYO), ascend-
ing aorta (AA) and background. We follow the previous dataset pre-processing
method of [3I1]. The domain adaptation tasks are MR — CT and CT — MR.

Implementation details. Following the standard setting of SFDA, we uti-
lize all labeled source data to obtain a pre-trained model 6y. In line with [22],
we employ the DeepLabV3+ [5] with MobileNetV2 [I6] backbone as our seg-
mentation network. Both the student and teacher models are initialized with
fy. The batch size is 16. The output probability threshold € is set to 0.75. The
initial learning rate is 5 x 1076 (MR — CT) and 5 x 10=* (CT — MR), and
the model Exponential Moving Average (EMA) update rate X is 0.98. All adap-
tation models are trained with the Adam optimizer. The following experiments
are implemented by PyTorch and conducted on an NVIDIA 3090 GPU.

We compare our methods with several SOTAs: 1) SFDA methods: DPL [4],
CBMT [17], FSM |21], AdaMI [1], FVP [19], CCG [9]; 2) Classic UDA method
for medical imaging: SIFA [3]. The lower-bound denoted as NoDA is a vanilla
segmentation network trained with Eq. without adaptation. For all above-
mentioned methods, we report the results in the original paper, otherwise we
conduct experiments according to their codes. The upper-bound denoted as Or-
acle is a network with initial 6y which is updated according to ground-truth
labels. For evaluation, we employed two widely utilized metrics: the 3D Dice
score and the Average Symmetric Surface Distance (ASSD).

3.2 Quantitative and Qualitative Discussion

In Table [1} SIFA |3] mitigates domain shifts by reconstructing CT-like MR im-
ages, achieving favorable results. Pseudo-labeling denoising SFDA methods, in-
cluding DPL [4], CBMT [17], and CCG [9], are primarily designed to handle
fundus images that consist solely of background and foreground. Consequently,
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Table 2: Results on CT (source) — MR (target). The evaluation metric is 3D
DSC (%) and ASSD (vox). The best result is marked as bold.

method ot DSC ASSD
CHROQ |SOUTCEE®l AA LA LV MYO Avg|[AA LA LV MYO Avg
NoDA - 1.6 14.6 46.9 17.0 20.0(37.6 28.7 10.6 15.3 23.0
Oracle - 91.2 90.1 91.8 89.4 90.6/2.8 3.2 3.0 25 2.9
SIFA [3] | |65.3 62.3 78.9 47.3 63.4|7.3 74 38 44 5.7
DPL [4] 15.6 59.3 63.0 39.8 44.4|15.6 12.710.5 9.7 12.1
CBMT [17] 252 77.2 732 253 50.3(26.210.2 55 7.6 124

FVP [19] 38.5 44.8 57.8 49.1 47.6|19.0 24.6 18.9 14.6 19.3
CCG [9] 62.9 73.7 45.8 35.7 54.5|5.2 5.8 55 58 5.6

ours | 64.3 81.3 83.4 38.6 66.9/5.4 3.4 3.0 5.1 4.2

X
v
v
FSM [21] v 354 60.5 62.6 42.3 50.2|11.1 84 7.2 9.0 8.9
v
v
v

MR—CT CT—MR

Fig. 2: Visualization on segmentation results. The cardiac structures of AA, LV,
LA and MYO are shown in blue, red, cyan and green, respectively.

they struggle to differentiate between various categories of cardiac images. F'VP
[19] employs visual prompts utilizing low-frequency parameters, which may re-
sult in the loss of semantic information. AdaMI [I] introduces a ground-truth
class-ratio prior as supervised information to facilitate target adaptation. How-
ever, AdaMI neglects to refine network predictions, leading to the potential for
poor pseudo-labels that can cause negative transfer.

Table 2] demonstrates that our approach offers significant advantages in the
CT — MR task. Previous SFDA studies primarily evaluate their methods on the
MR — CT task, as convolutional CNN models can more readily learn domain-
invariant features from MR images than from CT images. We contend that the
contrast ratio of MR images is greater than that of CT images (as indicated in
column 1 of Fig. [2]), which facilitates the differentiation between foregrounds and
backgrounds. In a source-free setting, the model is initialized with CT images,
resulting in poor performance on target MR images during the first epoch. Due
to the presence of inaccurate pseudo labels, the model cannot effectively update
itself in the correct direction when relying solely on target data in an unsuper-
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Table 3: Ablation study on CT — MR.

loss DSC ASSD
AA LA LV MYO Avg|AA LA LV MYO Avg
Lo/Lseg 15.8 54.9 61.1 27.1 39.7/12.718.45.5 6.6 10.8

Lo/Lseg + L 63.1 78.1 82.3 33.7 64.3|5.0 2.9 3.2 7.1 45
Lo/Lseg + Lot + Leon|64.381.383.4 38.6 66.9/54 34 3.0 51 4.2

100 100
80 80
S S
§ 40 —‘ —‘ § 40
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C=AAdice E==alVdice E==alAdice E==Myodice ==avgdice C=AAdice E==alVdice E=alAdice E==aMyodice ==l=avgdice
(a) MR—CT (b) CT—MR

Fig. 3: Evaluation on data augmentation of perturbation density. Different colors
corresponds to different parts of cardiac images.

vised manner. Our work explores the class relationships of target images, which
enables the model to learn discriminative features for these images.

In Figl2] we can see that our result is the closest to upper-bound Oracle,
appearing smoother edges than other methods. In Fig[3] we test the influence of
data augmentation techniques. Limited by space, we only show the effectiveness
of perturbation density. Obviously, a large perturbation density degrades the
segmentation results.

3.3 Ablation Study

In Table [3] line 1 demonstrates that the teacher-student model is a good frame-
work which can achieve passable results without other domain adaptation tricks.
Then, class-wise contrastive learning loss boosts the basic model with discrim-
inability for better pseudo labeling prediction. Finally, a consistency loss is pro-
posed to regularize the model for robustness. Although Lo/Lseq + Lo currently
exhibits excellent performance, incorporation of consistency loss L., can further
enhance its effectiveness. Therefore, it is necessary to emphasize the consistency
loss despite the fact that L., is partly contained in L.

4 Conclusion

This paper proposes a contrastive SFDA method that considers class relation-
ships with different views for cardiac image segmentation. To enhance the learn-
ing of pseudo labels, we construct two matrices to thoroughly explore the class
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relevance of the original and augmented images. We establish positive and nega-
tive pairs based on the predictions from the teacher and student models, pushing
the negative pairs away from the positive ones to improve discriminability. Al-
though our method performs well on cardiac datasets compared to other SOTA
approaches, it achieves only technically acceptable results on the MYO part.
This indicates that our proposal still has limitations in handling structures with
irregular shapes that are surrounded by or surround other structures, which will
be the focus of our future improvements.
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