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Abstract. Recent advances in generative self-supervised learning, par-
ticularly Masked Autoencoders (MAE), have shown significant promise
in medical image pre-training. However, ultrasound poses unique chal-
lenges due to its intrinsic low signal-to-noise ratio. While previous stud-
ies have enhanced MAE with deblurring for improved performance, their
static deblurring strategy fails to consider domain discrepancies arising
from variations in ultrasound imaging. To overcome these limitations, we
propose D2MAE—a Diffusional Deblurring-enhanced MAE framework
that seamlessly integrates a diffusional deblurring objective into MAE
pre-training, simultaneously optimizing both deblurring and masked im-
age reconstruction within a unified framework. Furthermore, we intro-
duce an optimal blurriness-aware fine-tuning strategy that dynamically
adjusts blurriness through an optimal blurriness search procedure, effec-
tively accommodating the inherent domain discrepancies in ultrasound
images. Extensive experiments across multiple ultrasound datasets, in-
cluding thyroid, pancreas, and ovary, demonstrate that D2MAE outper-
forms state-of-the-art methods, significantly enhancing generalizability
and diagnostic performance across diverse ultrasound tasks. Our results
establish D2MAE as a superior approach for ultrasound imaging pre-
training, paving the way for improved ultrasound image analysis. The
code and pre-trained models are publicly available on GitHub.

Keywords: Self-Supervised Learning · Masked Autoencoders · Diffu-
sional Deblurring · Ultrasound Pre-training.

1 Introduction

Recent advances in generative self-supervised learning (SSL), particularly Masked
Autoencoders (MAE) [10], have demonstrated significant potential in medical
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imaging pre-training [9,11]. By reconstructing masked regions from visible con-
texts, methods like MAE have achieved remarkable success across various med-
ical imaging modalities [29,15,4,14,22,16], enabling the extraction of generalized
features without manual annotations [2,10,26].

Ultrasound imaging, a cornerstone of medical diagnostics, poses unique chal-
lenges due to its inherent low signal-to-noise ratio [1]. While prior work [15] has
enhanced MAE with deblurring to yield promising performance in thyroid ul-
trasound, their static and inflexible deblurring strategy–i.e., assuming uniform
blurriness across all ultrasound images–fails to account for domain discrepan-
cies arising from heterogeneous imaging characteristics across ultrasound de-
vices [19,13,8], scanning protocols [8], and post-processing algorithms [7], hereby
limiting diagnostic generalizability across clinical settings [19,7,13,8].

Concurrently, denoising diffusion models, exemplified by denoising diffusion
probabilistic models (DDPMs) [12], have emerged as a dominant paradigm in im-
age generation through progressive noise addition and iterative denoising [5]. Al-
though originally designed for image synthesis, diffusion models share a common
generative foundation with MAE, and recent studies have begun to explore their
integration with generative SSL paradigm [24,25]. For instance, Wei et al. [24]
introduced DiffMAE, which conditions diffusion models on masked inputs to en-
hance representation learning, showing benefits for natural image pre-training.
However, this fusion remains largely unexplored for medical imaging.

To address these challenges, we propose D2MAE—a Diffusional Deblurring-
enhanced MAE framework that seamlessly integrates the strengths of diffusion
models and MAE, specifically curated for ultrasound image pre-training. Unlike
prior methods such as DeblurrMAE [15] and DiffMAE [24], D2MAE embeds a
diffusional deblurring objective into MAE pre-training, enabling joint optimiza-
tion of progressive deblurring and masked image reconstruction through a unified
learning framework. Furthermore, we introduce an optimal blurriness-aware fine-
tuning strategy that employs an optimal blurriness search (OBS) procedure to
automatically adjust the blurriness during downstream fine-tuning, aligning it
with the unique imaging characteristics and anatomical variations in ultrasound
images. Our contributions are summarized as follows:

1. We propose D2MAE, a novel generative SSL framework that integrates a
diffusional deblurring process with MAE to jointly optimize progressive de-
blurring and masked image reconstruction.

2. We introduce an optimal blurriness-aware fine-tuning strategy, which em-
ploys an optimal blurriness search (OBS) to dynamically select the most
appropriate deblurring level for downstream tasks.

3. We demonstrate that D2MAE significantly outperforms state-of-the-art meth-
ods in ultrasound tasks across multiple anatomical organs—including thy-
roid, pancreas, and ovary—with extensive experiments validating its superi-
ority as a pre-training approach for ultrasound images.
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Fig. 1: Overview of our proposed D2MAE. (a) D2MAE pre-training integrates a
diffusional deblurring process with MAE’s mask-reconstruction pre-training [10].
(b) D2MAE fine-tuning incorporates an optimal blurriness search procedure
prior to standard MAE fine-tuning, enabling automatic blurriness adjustment.

2 Method

2.1 Overview

We propose D2MAE, a novel SSL framework that seamlessly integrates a dif-
fusional deblurring process with MAE. As illustrated in Figure 1, our approach
comprises two primary components: (a) diffusional deblurring-enhanced MAE
pre-training, which simultaneously optimizes progressive deblurring and masked
image reconstruction in a unified framework, and (b) optimal blurriness-aware
fine-tuning, wherein an OBS procedure is performed prior to standard MAE
fine-tuning. The following sections detail these components.

2.2 D2MAE: Pre-training

During the pre-training, D2MAE jointly optimizes progressive deblurring and
masked image reconstruction. As depicted in Figure 1(a), given an original ul-
trasound image x ∈ RH×W×C , a blurriness level σt is randomly sampled from a
predefined set {σ1, σ2, · · · , σT } (with σ1 < σ2 < · · · < σT and a fixed interval,
we adopt a fixed-step σ schedule to ensure full blur coverage, enable efficient
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search, and reduce variance during training), where the time step t being uni-
formly selected from {1, . . . , T}, i.e., t ∼ U{1, . . . , T}. A Gaussian blur operation
is then applied to x:

xb = Gσt(x), (1)

where Gσt denotes Gaussian blurring with standard deviation σt. As shown in
Figure 1(a), σ0 corresponds to the original image (no blur), while σT represents
the maximum blurriness. Following MAE [10], we randomly mask 75% of the
patches in blurred image xb, yielding the masked input xm

b .
To explicitly encode the blurriness step information, we employ sinusoidal

blur embeddings inspired by DDPM’s timestep encoding [12]. A blurriness token
BLU(t) ∈ RD, is introduced and inserted after the CLS token, forming the input
sequence:

z0 = [CLS, BLU(t), E1, . . . ,EN ] +P, (2)

where Ei ∈ RD denotes the embeddings of unmasked patches from xm
b , and

P ∈ R(N+2)×D represents the position embeddings. The blur token is a 768-
dimensional vector, adding only 0.0009% parameters to the ViT-Base model.
This design enables the cross-attention mechanism to dynamically modulate
image representations based on the blurriness.

The input sequence z0 is then processed by the MAE architecture, which com-
prises a Vision Transformer (ViT) encoder [6] and a Transformer decoder [23].
The decoder reconstructs the deblurred image x̂, and the pre-training loss is
computed as the mean squared error between x̂ and the original image x:

Lpretrain = ∥x̂− x∥2. (3)

2.3 D2MAE: Downstream Fine-tuning

The overall downstream fine-tuning pipeline of D2MAE is summarized in Al-
gorithm 1. Unlike standard MAE fine-tuning, which directly fine-tunes the pre-
trained encoder on downstream tasks, our approach incorporates an OBS pro-
cedure prior to fine-tuning, which aims to accommodate the varying degrees of
blurriness in ultrasound images and select the most suitable level of deblurring.
It is important to note that the OBS procedure is executed only once (not at
every fine-tuning epoch), resulting in negligible computational overhead.

As illustrated in Figure 1(b), for each image x, we first generate a set of
blurred variants {x(t)

b }t=1, 1+s,...,T by applying a Gaussian blur with varying
standard deviations σt, where x

(t)
b = Gσt

(x) and s denotes the search step. The
pre-trained model Pθ processes each blurred image to yield a deblurred output:

x̂(t) = Pθ(x
(t)
b , t,mask ratio = 0), (4)

and the deblurring loss is computed as the mean squared error between x̂(t) and
the original image x. We then select the optimal blur level by identifying

t∗ = arg min
t∈{1, 1+s, ..., T}

∥x̂(t) − x∥2, σoptimal = σt∗ . (5)
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Algorithm 1 D2MAE: Downstream Fine-tuning
1: Input: Pre-trained model Pθ, fine-tuning model fθ, dataset {X,Y}, number of

classes C, optimal blurriness search step s
2: for each epoch do
3: Sample a batch {x,y} from {X,Y}
4: for t = 1 to T , step s do ▷ Optimal Blurriness Search (OBS)
5: Apply Gaussian blur: x(t)

b ← Gσt(x)

6: Generate deblurred image: x̂(t) ← Pθ(x
(t)
b , t,mask ratio = 0)

7: Compute loss: L(t)
deblur ← ∥x̂

(t) − x∥2
8: end for
9: Select optimal level: σoptimal = σt∗ , where

10: t∗ = argmint∈{1,1+s,...,T} L(t)
deblur ▷ Optimal blurriness level

11: Apply optimal blurriness: xb ← Gσt∗ (x)
12: Predict label probabilities: ŷ← fθ(xb, t

∗)
13: Compute cross-entropy loss: Lft ← −

∑C
c=1 yc log ŷc

14: Update fθ with Lft

15: end for

Finally, the corresponding blurred images x
(t∗)
b are utilized as input for down-

stream fine-tuning of the supervised model fθ.

3 Experiments and Results

3.1 Experimental Settings

Data To evaluate the effectiveness of our proposed D2MAE, we conducted com-
prehensive experiments on three distinct organs: thyroid, pancreas, and ovary.
Table 1 summarizes the datasets used for both pre-training and downstream
tasks, including data sources, image counts, and relevant characteristics. For
each organ, a representative downstream task was selected: (1) thyroid nodule
diagnosis using the GE4K dataset [15], which categorizes nodules as benign or
malignant; (2) pancreatic cancer diagnosis using the LEPset dataset [17]; and
(3) ovarian tumor diagnosis using the MMOTU dataset [27], which comprises
eight diagnostic categories. Dataset splits followed established protocols: a 3:1:1
train/validation/test ratio for GE4K [15], stratified five-fold cross-validation for
LEPset [17], and the original splitting protocol for MMOTU [27]. All pre-training
and fine-tuning datasets are strictly disjoint, ensuring genuine transfer evalua-
tion without data leakage.

Implementation Details For D2MAE pre-training, the blurriness set is de-
fined as 0.1, 0.2, · · · , 1.1, and the OBS step s is set to 2. We implement our
approach in PyTorch, using a batch size of 1024 for pre-training and 32 for
downstream transfer. Given the limited pre-training data, the number of pre-
training epochs was set to 8000, 6000, and 16000 for thyroid, pancreas, and
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Table 1: Summary of pre-training and downstream datasets.

Organ Pre-training Downstream
Source Images Total Dataset Classes Images

Thyroid GE4K [15] 10,675 10,675 GE4K [15] 2 4,494

Pancreas RadImageNet [21] 21,639 29,639 LEPset [17] 2 3,500LEPset [17] 8,000
Ovary RadImageNet [21] 3,593 3,593 MMOTU [27] 8 1,469

Table 2: Performance comparison across three datasets using F1 (%). Methods
are categorized into supervised pre-training (SP) and self-supervised pre-training
(SSP). The best results are bolded (statistical significance: P < 0.05), with the
second-best are underscored. ‘US’ denotes pre-training with ultrasound images.
Category Method Architecture Pre-training GE4K LEPset MMOTU

SP

ViT [6] ViT-B ImageNet 84.17±0.98 84.34±1.29 68.02±2.56
Swin Transformer [18] Swin-L ImageNet 84.92±0.82 82.66±1.88 68.58±2.02
ConvNeXt [20] ConvNeXt-L ImageNet 85.47±0.91 83.97±1.66 69.06±1.98
Zhou et al. [28] - - 86.09±0.74 - -

SSP

MoCo v3 [3] ViT-B ImageNet 84.48±1.12 81.64±1.28 68.87±1.74
ViT-B US 84.55±1.04 83.38±1.01 71.68±1.62

MAE [10] ViT-B ImageNet 85.23±0.57 81.71±0.83 68.58±1.96
ViT-B US 87.54±0.62 84.83±1.12 71.58±1.81

USFM [14] ViT-B US3M [14] 88.87±0.56 84.02±1.28 70.94±1.54
DSMT-Net [17] ViT-B US - 82.20±0.90 -
DiffMAE [24] ViT-B US 85.59±0.95 83.43±1.37 70.47±1.79
DeblurrMAE [15] ViT-B US 88.48±0.50 84.61±0.95 72.33±1.96
D2MAE (Ours) ViT-B US 89.84±0.27 87.41±0.78 75.70±1.16

P -value (best vs. second best) 0.007 <0.001 <0.001

ovary, respectively. All other pre-training and fine-tuning settings followed those
described in MAE [10]. The pre-training was conducted on 8 Nvidia V100 GPUs,
while downstream fine-tuning was performed on a single V100 GPU. Down-
stream performance is evaluated using accuracy (ACC), F1-score (F1), and area
under the receiver operating characteristic curve (AUROC). The reported F1
is the macro-average of class-wise F1 scores. Error bars denote 95% confidence
intervals (95% CI), and statistical significance is assessed via two-sided t-tests.

3.2 Results

Table 2 and Figure 2 present a comprehensive evaluation of downstream clas-
sification performance across three ultrasound datasets. We compare D2MAE
against several methods based on two paradigms: supervised pre-training (SP)
and self-supervised pre-training (SSP). Notably, we include two MAE variants
relevant to our work: DiffMAE [24], which integrates diffusion models with MAE,
and DeblurrMAE [15], which enhances MAE with static deblurring.

As shown in Table 2, D2MAE consistently achieves superior F1 scores across
all three datasets, outperforming the second-best methods with statistical signifi-
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Fig. 2: Performance comparison using ACC (%) and AUROC (%).

Table 3: Ablation study results

(a) Blurriness range

Range F1 (%)

0.1 → 0.6 89.68
0.1 → 1.1 89.84
0.1 → 1.6 89.43

(b) Blurriness embedding

Embedding F1 (%)

w/o embedding 87.66
Addition 88.57

Extra token 89.84

(c) OBS settings

Setting F1 (%)

No blur 87.95
Fixed(σ = 0.5) 88.36

With OBS 89.84

(d) Search step

Step s F1 (%)

s = 1 89.94
s = 2 89.84
s = 3 89.05

cance (all P < 0.05). Specifically, D2MAE attains a state-of-the-art F1 of 89.84%
for thyroid ultrasound on GE4K (improving by 0.97%), 87.41% for pancreas ul-
trasound on LEPset (improving by 2.58%), and 75.70% for ovarian ultrasound
on MMOTU (improving by 3.37%).

Furthermore, Figure 2 demonstrates that D2MAE outperforms competing
methods in terms of both ACC and AUROC. Specifically, D2MAE achieves
ACCs of 90.38% on GE4K, 87.43% on LEPset, and 80.47% on MMOTU, along
with AUROCs of 96.21% on GE4K, 94.13% on LEPset, and 93.17% on MMOTU.
All improvements are statistically significant (all P < 0.05).

Collectively, these results underscore the superiority and generalizability of
our diffusional deblurring-enhanced MAE pre-training approach across diverse
anatomical organs, affirming the efficacy of our targeted ultrasound image pre-
training strategy.

3.3 Ablation Studies

Table 3 presents the ablation results, evaluating key design choices in D2MAE
across four factors:
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Fig. 3: (a) Visualization of the optimal blurriness search procedure. The original
image is sourced from the pancreas LEPset [17]. The ‘Difference Image’ repre-
sents the absolute difference between the deblurred image and the original image.
In this example, the optimal blurring level is 0.5, corresponding to the minimum
deblurring loss L(t)

deblur. (b) Distributions of σoptimal across three distinct organs.

(a) Blurriness range: We experiment with different ranges during pre-training:
0.1 → 0.6, 0.1 → 1.1, and 0.1 → 1.6, each with a fixed interval of 0.1. The
range 0.1 → 1.1 achieves the best performance.

(b) Blurriness embedding: We test three strategies for incorporating blurriness
information: (i) without embedding, (ii) adding the blurriness embedding
to the image data, and (iii) treating the blurriness embedding as an extra
token. The extra token strategy performs best.

(c) OBS settings: We compare three settings before fine-tuning: no blur, a fixed
blurriness level (σ = 0.5), and the full OBS procedure. The full OBS config-
uration achieves the highest performance.

(d) Search step (s): The OBS process uses a search step to reduce computational
overhead. While s = 1 gives the highest F1 score, the performance drop with
s = 2 is marginal, and s = 2 provides efficiency gains. We adopt s = 2 in
our final implementation.

Overall, our ablation results demonstrate that a blurriness range of 0.1 → 1.1,
the extra token strategy for blurriness embedding, and the full OBS procedure
with a search step of s = 2 together yield the best fine-tuning performance.
These findings validate our design choices and underscore the effectiveness of
the proposed D2MAE framework for ultrasound image pre-training.

3.4 Visualizations

Figure 3(a) illustrates the OBS procedure employed during the optimal blurriness-
aware fine-tuning of D2MAE (see Figure 1(b)). This procedure searches for the
deblurring level most suitable for fine-tuning, specifically, the blurring level that
minimizes the deblurring loss, denoted as L(t)

deblur. In this example of pancreas
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ultrasound image, the selected optimal blurring level is 0.5 (σoptimal = 0.5). For
simplicity, the search step is set to s = 4 in this visualization.

Figure 3(b) shows the distributions of σoptimal obtained through the OBS
procedure across three distinct organs. Due to inherent domain discrepancies in
ultrasound imaging, each organ exhibits a unique optimal blurriness distribution,
emphasizing the need for our dynamic blurriness adjustment approach.

4 Conclusion

In this paper, we introduce D2MAE, a novel self-supervised pre-training frame-
work that integrates a diffusional deblurring process with masked image re-
construction paradigm of MAE for ultrasound image pre-training. Unlike prior
methods such as DeblurrMAE and DiffMAE, D2MAE integrates a progressive,
modality-specific deblurring process with a unified semantic learning objective
tailored to ultrasound. By adaptively adjusting the deblurring level during both
pre-training and fine-tuning, our approach mitigates the challenges posed by
domain discrepancies in ultrasound imaging. Comprehensive experiments con-
ducted on datasets from three distinct organs: thyroid, pancreas, and ovary
demonstrate that D2MAE outperforms current state-of-the-art methods in terms
of F1, accuracy, and AUROC, highlighting its superior generalizability. These
findings highlight the potential of integrating diffusional deblurring with MAE
to enhance ultrasound image pre-training.

Disclosure of Interests. The authors have no competing interests to declare
that are relevant to the content of this article.
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