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Abstract. Brain tumor segmentation (BraTS) of 3D Magnetic Reso-
nance Imaging (MRI) aims to facilitate clinical analysis of brain cancer.
Existing BraTS segmentation works tend to exploit convolutional neu-
ral networks (CNNs) or vision transformers (ViTs), yet CNNs have a
restricted receptive field that focuses on local context only and ViTs
suffer from high computational overheads due to quadratic complexity.
Recently, Mamba has shown superior performance over ViTs in long-
range dependency modeling, offering linear computational complexity
and lower memory consumption. However, these methods primarily learn
feature representation in the spatial domain, overlooking valuable heuris-
tics embedded in the frequency domain. Inspired by this, we propose
BraTS-UMamba, a novel Mamba-based U-Net designed to enhance brain
tumor segmentation by capturing and adaptively fusing bi-granularity
based long-range dependencies in the spatial domain while integrating
both low- and high-band spectrum clues from the frequency domain to
refine spatial feature representation. We further enhance segmentation
through an auxiliary brain tumor classification loss. Extensive experi-
ments on two public benchmark datasets demonstrate the superiority of
our BraTS-UMamba over state-of-the-art methods.
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1 Introduction

Accurate brain tumor segmentation of 3D Magnetic Resonance Imaging (MRI)
images is crucial for diagnosis, treatment planning and management of brain
cancer [15, 25]. Many convolutional neural network (CNN) based methods have
been proposed for brain tumor segmentation. The works of [12, 20] proposed fully
* H. Yao and H. Xiong contributed equally to this paper and are considered co-first
authors.
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convolutional network (FCN) [9] based methods for brain tumor segmentation.
Ronneberger et al. [13] introduced U-Net, an U-shaped architecture with skip
connections to enhance localization ability and gradient flow, which has become
widely used for medical image segmentation. Based on U-Net, nnU-Net [6] de-
veloped a dynamic adaptation mechanism, allowing automatic optimization of
the network depth, achieving promising brain tumor segmentation results. Zhou
et al. [26] further optimized U-Net by integrating 3D ShuffleNet as the encoder,
creating a computationally efficient segmentation model.

However, CNN-based methods can hardly capture global information owing
to their fixed receptive field and pooling operations [11]. Therefore, attention
mechanism [19] and vision transformers (ViTs) [3] have been adopted to over-
come this. For instance, [18, 28] leveraged attention mechanisms to strengthen
the representation of global dependencies and improve the segmentation accu-
racy. The works of [24, 16] leveraged ViTs to model global context within and
across different brain MRI sequences, and S2CA-Net [25] employed ViTs to facil-
itate the feature extraction of brain tumors’ shape and scale. The hybrid CNN-
Transformer architectures were also explored to integrate transformers with lo-
cal information and enhance brain tumor boundary representation [7, 15]. Due
to their quadratic complexity, ViTs face the challenge of high computational
overheads.

Recently, Mamba based methods [4, 8, 10, 21–23, 27] have been proposed to
perform state-space sequence modeling with linear computational complexity
and lower memory consumption, exhibiting superior performance compared to
attention and ViTs. Of these, [22, 27] performed sequence modeling along dif-
ferent directions, such as forward and backward, to enhance the feature repre-
sentation learning. Besides, U-Mamba [10] adopted a hybrid CNN-Mamba ar-
chitecture to extract local details and long-distance dependencies concurrently.
Although Mamba based approaches showed strong performance in vision tasks,
it has not been applied to brain tumor segmentation. Moreover, small tumors
often have blurred boundaries, making it hard for Mamba to capture local de-
tails. In addition, CNN-, ViT- and Mamba-based methods tend to utilize spatial
features, ignoring valuable information in the frequency domain [11] that can
help enhance the representation of spatial features.

In this paper, we propose BraTS-UMamba that exploits Mamba in a U-Net
shaped encoder-decoder architecture for effective brain tumor segmentation. At
each encoder layer, we design a novel Adaptive Mamba (AdM) module to cap-
ture bi-granularity based global features that describe long-range dependencies
from different perspectives. Unlike other Mamba methods using hard fusion, our
AdM module adaptively fuses these bi-granularity based features. To consider
small-sized tumors, we also equip AdM modules with multi-scale convolutions to
extract local details from multiple scales. Besides, brain tumor segmentation em-
phasizes the completeness and clear boundary of the segmentation maps. Hence,
we further refine these spatial features by leveraging frequency domain informa-
tion. In the frequency domain, high-band spectrum focuses on edges and texture
variations, while low-band spectrum represents global structures and continu-
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Fig. 1. Overview of the proposed BraTS-UMamba - a UNet style architecture. Its key
components include adaptive Mamba (AdM) module, frequency guidance based feature
enhancement (FGFE) module and two training losses with the main loss Lseg and an
auxiliary one Lcls.

ous regions. We introduce the Frequency Guidance based Feature Enhancement
(FGFE) module to complement spatial features by selecting informative fea-
tures from both of low- and high-band spectrum. We also apply an auxiliary
brain tumor classification loss to enhance segmentation accuracy. Experimental
results show that BraTS-UMamba outperforms several competitive baselines on
two challenging brain tumor segmentation datasets. Also, we report an ablation
study highlighting the contribution of the components of BraTS-UMamba.

2 Method

Fig. 1 illustrates the architecture of BraTS-UMama. It consists of three key
components: 1) adaptive Mamba (AdM) module in each encoder layer to cap-
ture both local and global features at multiple scales, 2) Frequency Guidance
based Feature Enhancement (FGFE) module in each decoder layer to enhance
spatial features using clues from both low- and high-band spectrum, and 3) the
output is simultaneously constrained by two losses: the main one for brain tumor
segmentation and the auxiliary for brain tumor classification.

2.1 Adaptive Mamba

Mamba based networks [21, 27] that build up long-distance dependencies from
different directions have shown promising performance in vision tasks. Unlike
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Fig. 2. Details of the Bi-granularity Mamba (BGM) layer. We leave out the depth
dimension for ease of illustration.

prior works, we propose the Adaptive Mamba (AdM) module that extracts global
features from different perspectives and adopts a soft way to fuse them adap-
tively. We also integrate the AdM module with convolutions of multiple receptive
fields to capture multi-scale local features. As shown in Fig. 1, the AdM module
in the l-th encoder layer takes features from previous layer as input and produces
the output feature F l

e, where l = 1, 2, · · · , 5. This process can be written as:

XMSC = MSC(F l−1
e ), XBGM = BGM(XMSC), F

l
e = AFF (XBGM ), (1)

where feature F l−1
e from previous layer sequentially goes through the multi-scale

convolution layer MSC(·), bi-granularity Mamba layer BGM(·), and adaptive
feature fusion layer AFF (·). Here, the MSC layer aims to extract multi-scale
local features from F l−1

e using 4 parallel convolutions with kernel sizes 1×1×1,
3× 3× 3, 5× 5× 5, and 7× 7× 7.

Bi-granularity Mamba (BGM) Layer. Suppose XMSC has c channels, the
BGM layer first flattens it into c subsequences across the channel direction and
obtains subsequences: s1, s2, · · · , sc. Based on these subsequences, we follow [22]
to reconstruct two sequences Xg1 and Xg2 with different granularities, as shown
in Fig. 2. Then, we have:

X1 = S6(Xg1) + S6(X
′

g1), (2)

X2 = S6(Xg2) + S6(X
′

g2), (3)

where X
′

g1, X
′

g2 are the reversed sequences of Xg1, Xg2, and S6(·) denotes the
selective scan space state model (S6) [4] that allows each element in a sequence
to interact with all previously scanned elements via a compressed hidden state.

Adaptive Feature Fusion (AFF) Layer. As shown in Fig. 1 (c), we utilize
the attention mechanism to estimate the fusion weight for X1 and X2, and
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pass the initial feature integration X̂=X1+X2 to the AFF layer to generate
the fused feature F l

e. We simultaneously estimate pixel-wise and channel-wise
attention scores Zp and Zc as:

Zp = PA(X̂),Zc = CA(X̂), (4)
W = σ(Zp ⊕Zc), (5)

F l
e = W ⊙X1 + (1−W )⊙X2, (6)

where PA(·) refers to pixel attention with convolutions and ReLU to obtain
Zp, and channel attention CA(·) combines global pooling with convolutions and
ReLU to obtain Zc. Then, the sigmoid activation function σ(·) squashes the
attention scores into fusion weight W within the [0,1] range. Here, ⊕ and ⊙
denote broadcasting summation and element-wise multiplication, respectively.

2.2 Frequency Guidance based Feature Enhancement

To improve BraTS-UMamba’s ability to represent brain tumor boundaries, fine-
grained textures and global layout, we introduce the Frequency Guidance based
Feature Enhancement (FGFE) module using both low- and high-frequency in-
formation to complement spatial features.

We design a cross-domain attention fusion to alleviate feature redundancy
and select informative features for complementary fusion of features from spatial
domain and frequency domain. Given a spatial feature F l

s in the l-th decoder
layer, we utilize the 3D Laplacian pyramid decomposition [2] to decompose it into
the high- and low-frequency components F h and F l that are passed through a
mapping layer to produce the query matrices Ql and Qh. Meanwhile, F l

s passes
through another two mapping layers to generate the key and value matrices
K,V that are shared by both Ql and Qh. Then, we have:

F̂ l = softmax

(
QlK

T

√
d

)
V , F̂ h = softmax

(
QhK

T

√
d

)
V . (7)

Afterwards, we concatenate F̂ l, F̂ h along channel dimension and add it back to
F l

s, as shown in Fig. 1.

2.3 Loss Function

Brain tumors are typically small, while normal brain tissue occupies most part of
the brain. During learning, the dominant part of the normal tissue may distract
the focus and introduce biases. To mitigate this, we add an auxiliary brain tumor
classification loss to the brain tumor segmentation loss.

We have the ground truth brain tumor mask M ∈ {0, 1, 2, 3}D×H×W and the
network output P ∈ RD×H×W containing predicted probabilities that are uti-
lized to generate the predicted segmentation mask Ŝ ∈ {0, 1, 2, 3}D×H×W . The
segmentation loss Lseg is supervised by the Dice loss Dice(M , Ŝ). For auxiliary
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brain tumor classification loss Lcls, we divide the ground truth mask M into
3D patches of size 16 × 16 × 16 along the depth, height and width dimensions.
Each patch is assigned the ground truth classification label Cp = 1 if it contains
brain tumor or 0 otherwise. Likewise, we divide the network output P into 3D
patches M̂p of size 16×16×16 and compute brain tumor classification loss Lcls

using the binary cross-entropy loss BCE(M̂p,Cp). The network is trained via
both losses with a trade-off parameter λ (set to 0.6) as:

Ltotal = Lseg + λLcls. (8)

3 Evaluation

3.1 Experimental Setting

Datasets. We evaluate the performance of all methods on two datasets, MSD
BTS [17] and BraTS2023-GLI [1], which contain 484 and 1, 251 MRI scans,
respectively. These MRI scans were captured by four modalities: T1-weighted
(T1), T1-weighted contrast-enhanced (T1ce), T2-weighted (T2), and fluid at-
tenuated inversion recovery (FLAIR). The datasets also provide brain tumor
ground truth masks annotated by clinical experts, marking three tumor regions:
necrotic tumor core (NCR), peritumoral edematous/invaded tissue (ED), and
enhancing tumor (ET). The performance is evaluated on three regions: the ET
region, tumor core (TC) region for ET and NCR, and the whole tumor (WT)
region for ET, NCR, and ED.

Baselines and Evaluation Metrics. We compare our method against seven
recent segmentation baselines including attention-based (EoFormer [15], M2FTrans
[16], SDV-TUNet [28]), transformer-based (S2CA-Net [25], UNETR++ [14],
SWinUNETR-V2 [5]), and the latest Mamba-based segmentation method Seg-
Mamba [22] that also builds long-range dependencies of a different granularity.
To our knowledge, we are the first Mamba based method for brain tumor seg-
mentation. In the evaluation, we use the Dice Similarity Coefficient (DSC) and
95% Hausdorff distance (HD95).

Implementation Details. BraTS-UMamba was implemented using PyTorch
on a workstation equipped with an NVIDIA 4090 GPU. Our model was trained
for 1, 000 epochs using the Adam optimizer with batch size of 4. Data aug-
mentation techniques, including rotation, scaling, elastic deformation, and ran-
dom cropping, were applied during training. The brain volume was divided into
patches of 128× 128× 128 with an overlapping step 96 for training or inference,
and the 5-fold cross validation was utilized for evaluation.

3.2 Comparison with SOTA Methods

As shown in Tables 1 and 2, our proposed BraTS-UMamba consistently outper-
forms all the baselines on two datasets. For instance, BraTS-UMamba achieves
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DSC: 0.93 DSC: 0.91 DSC: 0.87 DSC: 0.89 DSC: 0.94DSC: 0.97

DSC: 0.98 DSC: 0.93 DSC: 0.91 DSC: 0.92 DSC: 0.94 DSC: 0.95

Input Ours S2CANet M2FTrans UNETR++ SwinV2GT SegMamba

Fig. 3. Visual comparisons of BraTS-UMamba and several leading baselines on MSD
BTS (top row) and BraTS2023-GLI (bottom row). The green, yellow and red regions
denote necrotic core (NCR), enhancing tumor (ET), and edema (ED).

Table 1. Evaluation with the MSD BTS dataset (best result in boldface).

Methods DSC (%) ↑ HD95 (mm) ↓
ET WT TC Avg. ET WT TC Avg.

Eoformer [15] 74.28 88.29 80.95 81.17 5.98 8.59 7.10 7.23
M2FTrans [16] 77.31 89.53 82.87 83.24 6.12 7.10 5.80 6.34
SDV-TUNet [28] 73.42 87.69 79.59 80.23 5.96 7.09 7.52 6.86
S2CA-Net [25] 77.35 89.40 82.68 83.14 5.62 7.49 7.54 6.88
UNETR++ [14] 75.21 88.69 81.87 81.93 6.17 8.27 7.87 7.44
SwinUNETR-V2 [5] 75.92 88.69 82.28 82.50 5.45 8.03 6.96 6.81
SegMamba [22] 76.82 89.62 82.74 83.06 5.31 7.37 6.45 6.38
Our method 80.63 90.61 84.08 85.11 3.92 4.93 5.14 4.66

Table 2. Evaluation with the BraTS2023-GLI dataset (best result in boldface).

Methods DSC (%) ↑ HD95 (mm) ↓
ET WT TC Avg. ET WT TC Avg.

Eoformer [15] 83.11 90.68 87.60 87.13 4.60 7.50 5.92 6.01
M2FTrans [16] 84.17 91.11 87.77 87.68 4.38 7.84 5.73 5.98
SDV-TUNet [28] 83.96 90.50 87.36 87.27 3.41 5.61 5.29 4.77
S2CA-Net [25] 83.91 91.60 87.91 87.81 4.46 6.94 6.04 5.82
UNETR++ [14] 83.62 91.63 87.82 87.69 4.21 5.92 5.50 5.21
SwinUNETR-V2 [5] 84.07 91.85 88.12 88.01 3.92 5.86 5.33 5.04
SegMamba [22] 84.65 92.12 88.34 88.37 4.22 4.92 5.80 4.98
Our method 85.74 92.90 90.71 89.78 3.11 4.09 3.80 3.66

an average DSC of 85.11% and an average HD95 of 4.66 on the MSD BTS
dataset, outperforming the second-best method M2FTrans by 2.25% and 26.50%,
respectively. For the BraTS2023-GLI dataset, BraTS-UMamba surpasses the
second-best results by 1.60% and 23.27% in terms of average DSC and HD95
scores, respectively. The results highlight BraTS-UMamba’s strong potential for
brain tumor segmentation. In Fig. 3, we also visually compare BraTS-UMamba
and several leading baselines, demonstrating that our method can produce brain
tumor segmentation with better connectivity and clearer boundary.
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Table 3. Ablation study of investigating key components in our model on the MSD
BTS dataset. The best result is indicated in boldface.

baseline S1 S2 S3 S4 ours
DSC (%) ↑ 81.74 82.63 83.65 83.50 84.07 85.11

HD95 (mm) ↓ 7.42 6.52 6.11 5.89 5.61 4.66

Image HF only FGFE moduleLF onlyGT

Image HF only FGFE moduleLF onlyGT

Image HF only FGFE moduleLF onlyGT

Fig. 4. Effects of feature maps guided by high-frequency component only (HF only),
low-frequency component only (LF only), and both of low-, high-frequency (FGFE
module).

3.3 Ablation Study

We investigate the effects of the key components of BraTS-UMamba. In Ta-
ble 3, S1 refers to our method that only keeps the Adaptive Mamba module,
while ‘baseline’ replaces the adaptive feature fusion (AFF) layer in S1 with a
simple concatenation. The adaptive fusion (S1) enhances performance against
the hard fusion of baseline. Based on S1, we gradually add the low-frequency
component guided feature enhancement (S2), high-frequency component guided
feature enhancement (S3), and the FGFE module (S4). Although S2 and S3
improve the accuracy further, S4 considering both low- and high-frequency in-
formation shows a substantial enhancement. We visualize the feature maps after
considering the frequency domain information in Fig. 4, which illustrates that
low- and high-frequency features can capture continuous regions and boundaries
effectively. Finally, ‘ours’ that incorporates the auxiliary brain tumor classifica-
tion loss function achieves the best segmentation performance.

4 Conclusions

In this work, we propose the BraTS-UMamba model for brain tumor segmenta-
tion that devises an adaptive Mamba to fuse bi-granularity global features in a
soft manner and exhibits a higher flexibility than the hard fusion. By leveraging
the frequency domain information, it enables our network to capture clearer tu-
mor boundary and ensures a better connectivity of the segmentation masks. Be-
sides, an auxiliary brain tumor classification loss combined with the traditional
segmentation loss enhances the segmentation accuracy. Experimental results on
two datasets validate the effectiveness and accuracy of BraTS-UMamba.
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