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Abstract. We address image segmentation in the domain-incremental
continual learning scenario, a use-case frequently encountered in medical
diagnostics where privacy regulations and storage constraints prevent ac-
cess to historical data. In this scenario, segmentation models must learn
to cope with new domains (e.g., difference in imaging protocols or pa-
tient population) while maintaining performance on previously learned
domains without full access to past data. Feature-based replay addresses
the privacy concerns by only storing latent feature representations in-
stead of original images. However, existing feature replay approaches
have a critical limitation: they sacrifice U-Net skip-connections, which
are essential for achieving high segmentation accuracy and fast conver-
gence. This limitation significantly impacts clinical viability, especially
when alternatives such as full model retraining or maintaining domain-
specific models are available. Therefore, we propose feature replay with
optimized channel-consistent dropout for U-Net skip-connections (FO-
CUS). FOCUS enables crucial skip-connections in feature replay while
respecting privacy and storage constraints, and integrates recent do-
main generalization techniques based on data augmentation. Evalua-
tion across two domain-incremental continual MRI segmentation set-
tings demonstrates that FOCUS achieves substantial improvements (up
to 21% average DSC) over existing methods, while saving only 0.5% of
the original feature information per domain. The code is available at
https://github.com/imigraz/FOCUS/.

Keywords: continual learning - segmentation - deep learning.

1 Introduction

In domain-incremental continual segmentation, models are sequentially trained
on datasets from different domains and need to adapt continuously while also
maintaining performance on past domains. Domains in clinical practice can be
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understood as differences in patient populations, imaging protocols, or disease
categories [6l20]. However, storing several large medical datasets can be imprac-
tical [6], and access to past patient data may be restricted by privacy regula-
tions [5]. In settings where access to past data is limited, models become prone
to catastrophic forgetting, where they lose their ability to perform well on previ-
ously learned domains when trained on new data. The alternative of maintaining
domain-specific models introduces its own challenges, demanding precise domain
identification during inference and increased resource requirements. Therefore,
it is vital to develop continual learning approaches that allow a single model to
adapt to new data, preserve performance on previous tasks, manage computa-
tional resources, and adhere to privacy constraints.

Replay-based approaches have proven most successful at mitigating catas-
trophic forgetting in continual learning, for both natural [23] and medical se-
mantic image segmentation [7]. Exemplar-replay methods preserve and reuse
actual image samples [2[6J7/T7], which, however, raises privacy and storage con-
cerns [23]. Instead of storing actual samples, generative replay techniques synthe-
size training samples using generative models trained on previous domains [12].
Lastly, there are methods [TIIT6] that rely on latent feature representations ob-
tained from the model instead of original data, which are domain-invariant and
low-dimensional, thus offering privacy protection. Furthermore, they reduce the
computational complexity for generative-replay [11]. However, existing feature
replay methods in medical continual segmentation [2II1] do not use U-Net [19]
skip-connections, as they rely on the lowest dimensional features. Nevertheless,
these are vital for high segmentation performance and convergence speed [24].

To lift this limitation, we propose feature replay with optimized channel-
consistent dropout for U-Net skip-connections (FOCUS), as shown in Figure
FOCUS boosts segmentation performance by employing feature replay with vital
skip-connections and retaining first level encoder features. To comply with pri-
vacy and storage constraints, we introduce channel-consistent dropout (CCD),
which deletes 90% of the spatial information before saving features, and overall
save only 5% of the domain features. Moreover, we propose a domain-stratified
feature sampling scheme with domain balanced feature sampling (DBS) to re-
tain good performance on all past domains. Lastly, FOCUS leverages recent ad-
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vances in domain generalization [I5J22] with global intensity non-linear augmen-
tation (GIN) [I5], not investigated in continual learning before. GIN promotes
the encoder to learn domain-invariant shape features. Our evaluation using two
popular continual learning settings (prostate and hippocampus) demonstrates
that FOCUS notably outperforms state-of-the-art domain-incremental contin-
ual MRI segmentation methods.

2 Methods

Our method uses direct replay of stored latent domain features. Using the basic
framework of [11], we apply feature replay to the established U-Net architec-
ture [I9], which contains skip-connections between encoder and decoder. In our
setting of sequential domains, we collect features from all patients after the train-
ing phase of the current domain d, based on 2D image slices of the original 3D
inputs. We store output feature maps from the first encoder level F' € RH*WxC
where H and W are the spatial dimensions and C'is the number of feature chan-
nels, in a domain-specific memory buffer M,. Storing features from the first
encoder level is sufficient for supporting skip-connections, as feature maps from
lower levels can be computed. Starting with the second domain, we interleave
training between new domain images and our feature replay that samples fea-
tures F' from each My, alternating between current domain and feature replay
after each batch of input images. Stored features are directly inserted as the
output of the first convolution block during replay, as shown in Figure

FOCUS enhances feature replay with skip-connections with three contribu-
tions: (1) we delete spatial information from features F' adhering to privacy
and storage constraints with channel-consistent dropout (CCD), (2) domain bal-
anced feature sampling (DBS) that enhances feature sampling to balance across
domains and (3) integration of GIN [I5] that lets the model focus on domain-
invariant shape features.

Channel-Consistent Dropout. Storing first-level encoder feature maps F
introduces privacy and storage concerns as they contain patient-specific informa-
tion and scale with C. To address this, we introduce channel-consistent dropout
(CCD), defined as

CCD : RIXWXC _, REXWXC with CCD(F, p)hw.e = Frw.eDnw >, (1)

where D € {0,1}#*W with Dy ,, ~ Bernoulli(l1 — p) and p is the dropout
probability (e.g., p=0.9 for 90% CCD). CCD can be understood as a Hadamard
product between F' and D, applied channel-wise.

Our approach provides two key advantages: First, it enables efficient fea-
ture compression through spatial dropout [2I] that is shared over all channels,
reducing the storage complexity from scaling with C to being constant for all
locations, where dropout is selected. Second, it provides privacy through a multi-
layered protection scheme. CCD applies high spatial dropout (e.g., 90% CCD)
uniformly across channels and leverages non-invertible transformations from the
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first convolution block that includes non-linear activations. Furthermore, we re-
move information by keeping only a small percentage (e.g., 5%) of overall features
F from each domain d (domain feature percentage, DFP). This prevents spatial
consistency in 3D that is not needed for effective 2D feature replay. We select
the samples to be dropped using patient-stratified random sampling, which pre-
serves balanced patient representation. Overall, this combination of CCD and
DFP makes original image reconstruction very challenging, as it requires re-
covery of spatial information, despite high sparsity, non-linear mappings, and
inconsistent 3D patterns.

During training, we apply CCD to 25% of samples within each batch of
current domain images. This ensures both encoder and decoder adapt to CCD-
induced perturbations that are always present in feature replay while maintain-
ing performance. Importantly, CCD is only applied during training.

Domain Balanced Feature Sampling. Domain balanced feature sam-
pling (DS) is designed to both balance across domains and to effectively sample
relevant anatomical structures within each domain d. Instead of randomly sam-
pling over all saved features of all My, which would bias toward larger datasets
with more available features, we equally weight each d for better generalization
across domains. Specifically, given a batch with size B and N domains, we allo-
cate B/N samples per domain. Within each domain’s batch partition, we follow
nnU-Net’s sampling strategy where 33.3% of patches are guaranteed to contain
foreground classes while the remaining 66.7% are sampled randomly (foreground
oversampling was highlighted as missing in the implementation of [IT]).

Global Intensity Non-Linear Augmentation. After training the first
domain, we freeze the encoder weights, otherwise there is a severe distribution
shift in the features, which would render feature replay ineffective [I6]. This is a
significant shortcoming of feature replay, as it depends on the assumption that
the encoder can learn robust domain-invariant features already from the first
domain. Therefore, we take advantage of recent advances in domain generaliza-
tion [I5I22] that have shown promising results through strong data augmentation
such as global intensity non-linear augmentation (GIN) [I5]. To the best of our
knowledge, we are the first to adapt this strategy to continual segmentation. GIN
consists of a series of convolution layers and is used for data augmentation by
randomly re-initializing convolution kernels. During training, GIN augmentation
is stochastically applied with 50% probability to a batch of input images from the
current domain after standard data augmentation. In this way, GIN promotes
the encoder, before being frozen after the first domain, to learn domain-invariant
shape features. Please note that GIN is not applied during the feature extraction
phase when populating My, to keep domain-specific information intact.

2.1 Comparison Methods

We evaluate our exemplar-based feature replay approach against established
continual learning methods [4/9] and recent techniques specifically developed for
domain-incremental medical image segmentation [11125]. Elastic weight consol-
idation (EWC) [9] is a regularization-based approach built on the idea to reg-
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ularize the change of weights that are important for past tasks. For knowledge
distillation-based approaches, we investigate modeling the background (MiB) [4]
and tri-enhanced distillation framework (TED) [25]. While both methods tar-
get semantic segmentation, TED is specifically designed for domain-incremental
medical image segmentation. Furthermore, we compare our method with double
conditioned variational auto-encoder (ccVAE) [II], which employs generative-
replay with bottleneck features. Contrary to our method, ccVAE disables skip-
connections and is computationally and storage expensive, as there is the need
to train and save a large fully connected VAE model per domain. EWC, TED
and MiB storage complexity scales with the number of U-Net weights and thus
is negligible. All comparison methods are considered privacy-protecting (PP).

3 Experimental Results

We use the continual learning setting of [7], where each model trains sequen-
tially on several domains. Per step, only current domain images and labels are
accessible. Still, the model should perform well on all past and current domains.

3.1 Datasets

We followed the dataset configuration from [I1] using public domain-incremental
MRI datasets. For continual prostate segmentation, we utilized a multi-site
dataset [I3] with the sequential training order: BIDMC (12 subjects) — 12CVB
(19 subjects) — HK (12 subjects) — UCL (13 subjects), where MRI acquisitions
alternated between using and not using endorectal coils. For hippocampus seg-
mentation, we employed three datasets in sequence: DecathHip [1] (130 subjects,
both healthy and schizophrenia patients), Dryad [10] (25 healthy subjects), and
HarP [3] (135 elderly subjects with and without Alzheimer’s disease). While De-
cathHip provided pre-cropped volumes of interest (VOI) containing either the
left or right hippocampus, we extracted VOIs containing both hippocampi from
Dryad and HarP to prevent patient overlap between training and testing sets.

3.2 Implementation Details

All experiments use the popular nnU-Net framework [§] that was extended for
continual learning by [7]. Same as previous work [I1I25], we use a 2D U-Net.
Following |11, we split datasets into training (56%), validation (24%), and test
(20%) sets. FOCUS uses 90% CCD and 5% DFP. Moreover, for experiments with
DFP set to 5%, we average over five runs. First level-encoder features F' have
32 channels C. EWC, MiB, and ccVAE use default parameters from [II] given
identical settings. For TED, we evaluate the knowledge distillation weighting
parameter A € {1, 0.1, 0.001} and only report the best result. Furthermore,
we enhanced the loss functions that TED introduces to be compatible with the
deep supervision feature of nnU-Net. The baseline consists of naive sequentially
trained U-Net (Seq.) and individual domain models (Individ.). Furthermore, we
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Table 1. Continual hippocampus test set performance. Bold values indicate the best
performing method per column. Underlined values indicate second-best performance.
Methods at the bottom and top are complementary and excluded from comparison.

Method CL metrics 1 DSC (%) after last domain 1
AVG BWT FWT|DecathHip Dryad HarP
Individ. (250 ep.) - - - 89.2+2 89.8+1 84.8+8
Seq. 85.5+3 -74 1.5 77.9+7 86.8+£3 86.8+9
EWC [9] 85.2£5 0.0 -15.9| 88.9+3 81.3*1 61.9+14
MiB [4] 87.8+2 -3.1 1.3 84.6+5 88.8+2 86.6+9
TED [25] (A=0.001) 86313 -6.0 1.6 | 80.346 87.4%3 86.949
ccVAE [11] 79.5+8 8.7 -14.0| 87.7+4 87.9+2 83.248
Seq.+GIN 86.2+3 -6.5 1.5 82.94+4 87.24+3 87.0+9
FOCUS 89.5+1 -1.6 1.7 | 88.9+3 89.2+2 86.8+9
L(No Skip, No CCD, 100% DFP)|77.1+£12 10.6 -18.6| 88.7+2 88.44+1 83.5+8
L(Skip, No CCD, 5% DFP) 88.9+1 -1.3 14 88.5+3 89.2+2 86.8+9

also extend Seq. with GIN (Seq.+GIN), which was not done before in continual
learning literature. ccVAE experiments ran on a system with dual A100 GPUs
(each 80GB VRAM) with 128GB CPU RAM. Other experiments could run on
a workstation with GTX 3090 (24GB VRAM, 64GB RAM).

3.3 Evaluation Metrics

Segmentation Metrics. We use Dice Similarity Coefficient (DSC) [2U7/11].
Furthermore, for our ablation study, we adopt a dual-metric approach using both
DSC (counting-based) and Mean Average Surface Distance (MASD, distance-
based). While our model operates on 2D slices, we employ 3D evaluation metrics
for accuracy, utilizing the MetricsReloaded [14] implementation for MASHﬂ

Continual Learning Metrics. We evaluate continual learning using aver-
age backward transfer (BWT) [I8] computed over all continual learning time-
steps and forward transfer (FWT) as defined in [7]. BWT quantifies how learning
new tasks affects performance on past learned tasks. FWT evaluates how knowl-
edge from previously seen domains affects learning of new domains. Additionally,
we evaluate the average segmentation performance on previously seen domains
over all time-steps (AVG) [18].

3.4 Segmentation Results

Hippocampus Setting. This setting consists of a large collection of small im-
ages, e.g, 260 small-resolution images (36x50x35) for DecathHip, representing
a straightforward segmentation task after VOI cropping (Table [1, Figure .
In the continual learning context, sequential training (Seq.) exhibits substantial
catastrophic forgetting (-7.4 BWT). While EWC has neutral BWT, its lim-
ited plasticity impairs adaptation to new domains, resulting in lower average

3 lhttps://github.com/Project-MONAI/MetricsReloaded/ last accessed 03.02.2025


https://github.com/Project-MONAI/MetricsReloaded/blob/main/MetricsReloaded/metrics/pairwise_measures.py

FOCUS: Feature Replay with Optimized Channel-Consistent Dropout 7

Table 2. Continual prostate setting performance.

Method CL metrics 1 DSC (%) after last domain 1
AVG BWT FWTBIDMC 12CVB HK UCL
Individ. (250 ep.) - - - |67.3+£34 83.2+2 87.6£5 80.6+7
Seq. 57.4+8 -30.5 2.0 |57.3£20 45.3£17 42.4433 86.41+4
EWC [9] 48.9£17 -21.6 -37.7(53.5+23 15.7£14 26.2+8 46.1+17
MiB [4] 59.0£7 -31.7 0.6 [55.9410 37.2+11 27.6£30 83.1£7
TED [25] (A=0.1)[ 52.7£9 -23.3 -18.1|31.14:22 55.4+14 67.3£0 75.89
ccVAE [11] 53.8£15 2.6 -10.7(66.5+23 37.7+£28 66.1£16 69.3£5
Seq.+GIN 76.5+11 -20.5 2.8 |65.84+4 79.5+2 72.6+11 86.74+3
FOCUS 80.5+7 -10.3 0.7 |75.746 81.2+3 84.3+6 83.3+5

performance (85.24+5) compared to Seq. (85.543). Despite incorporating hyper-
parameter tuning and deep supervision, TED shows only marginal improvement
over Seq. (86.3£3 AVG). ccVAE’s high BWT (8.7) but poor AVG DSC (79.5+8)
stems from its U-Net architecture without skip-connections, leading to slow con-
vergence and compromised FWT (-14.0). MiB emerges as the best performing
related work with 87.842 AVG and minimal forgetting (-3.1 BWT). Our GIN
integration with Seq. yields modest improvements over default Seq. in both av-
erage performance (86.2+3) and forgetting resistance (-6.5 BWT).

FOCUS substantially outperforms existing methods, achieving 89.5+1 AVG
while storing only 5% of features and using 90% CCD. It demonstrates strong
forgetting resistance (-1.6 BWT) and transfer capability (1.7 FWT), enabled by
its unique approach of applying CCD exclusively during training. This preserves
skip-connection benefits without compromising privacy or storage efficiency and
is further highlighted by the poor performance of the skip-connection-free variant
(No Skip) without CCD and feature removal. Notably, using high CCD (90%)
surpasses using no CCD (89.5 vs. 88.9), likely because the increased training
difficulty promotes more robust feature learning when sufficient data is available.

Prostate Setting. This setting presents a challenging scenario with large
images (48x384x384) but a limited number of samples (e.g., 12 images overall
for BIDMC), characterized by significant domain gaps (Table 2} Figure [2)). Tra-
ditional continual learning approaches struggle, with sequential training (Seq.)
achieving only 57.448 AVG DSC. Even domain-specific models show inconsis-
tent performance, particularly with BIDMC’s image 7. MiB slightly outperforms
Seq. (59.0+7), while ccVAE exhibits strong backwards transfer (2.6 BWT) but
poor overall performance (53.8415). Notably, our Seq.+GIN, which extends Seq.
with stronger data augmentation, shows high effectiveness with 76.5+11 AVG.

In this difficult setting, FOCUS also shows superior performance, achieving
80.5+7 AVG while storing only 0.5% of original feature information. However,
the limited sample size and consequently fewer features make the model more
sensitive to high CCD and overall feature elimination, resulting in some forget-
ting (-10.3 BWT), but with slightly positive forward transfer (0.7 FWT).

Ablation. Table |3| demonstrates the impact of each proposed component of
FOCUS on performance, storage complexity and privacy-protection. Generative
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Table 3. Ablation results for the continual prostate setting. CCD and DFP are
percentage-based (%). The relative storage factor (RSF) indicates the approximate
storage needed compared to storing the original images. Privacy-protecting (PP) spec-
ifies if a method applies considerable privacy-protection mechanisms for saved features.

Method Components DSC (%) 1 MASD (mm) | |RSF|PP
Skip DBS GIN CCD DFP| AVG BWT FWT| AVG BWT FWT| |
ccVAE | — - - - - 153.8£15 2.6 -10.7/10449 -7.5 23 | 14 |V
No GR 0 100 [58.7+15 6.9 -10.9|85£9 -7.7 1.7 |0.1|V
v 0 100 |66.9£3 -15.8 -1.2 |3.3£1 2.0 04 | 32
v v 0 100 |68.8+4 -13.0 -0.3 |3.7+£2 2.2 0.2 | 32
g v v 0 100 |834+4 -49 02 |20£1 0.1 04 | 32
% v v v 0 100 |85.2+2 -1.6 0.6 (1.7+0 0.2 0.2 | 32
a v v 90 100 |70.2+£6 -12.6 0.0 |6.8£5 7.2 0.0 [3.2|V
< v v v 90 100 |81.5+6 -81 0.0 [2.5£1 18 0.0 |3.2]|V
v v v 0 5 |8l.7x7 -7.7 0.7 [22x1 1.0 0.2 |1.6
v o v v 95 100|81.0+£8 -9.1 05 [26£1 1.7 03 |16]|V
FOCUS| v v v 90 5 [80.56&7 -10.3 0.7 |2.5+1 1.9 04 |02V

replay (GR) as used in ccVAE ensures privacy-protection, but decreases per-
formance. Additionally, using fully-connected VAE models take up more space
than the investigated MRI datasets. Skip-free architectures achieve high BWT
but suffer from poor FWT and AVG DSC, making them impractical for clin-
ical applications. GIN provides substantial performance improvements by let-
ting the model focus on domain-invariant shape features, thereby mitigating
the impact of the frozen encoder by design. Interestingly, using GIN improves
intra-domain performance even exceeding the domain model results especially on
BIDMC. Furthermore, domain balanced sampling (DBS) slightly boosts perfor-
mance with and without GIN. Even though channel-consistent dropout (CCD)
reduces performance in the continual prostate setting, except for FWT, it en-
ables vital privacy protection and storage efficiency of saved domain features.
This is prominently demonstrated by the low relative storage factor (0.2 RSF)
of FOCUS.

4 Conclusion

We propose FOCUS, a novel approach for domain-incremental continual MRI
segmentation that substantially outperforms the related work. FOCUS enables
the use of crucial U-Net skip-connections in feature replay while also maintaining
strict privacy constraints. Moreover, our approach stores only 0.5% of original
feature information per domain. Our integration of data augmentation tech-
niques from domain generalization literature substantially enhances continual
learning performance. Evaluation on two continual MRI datasets demonstrates
that FOCUS improves average DSC by up to 21% compared to state-of-the-
art methods, moving continual learning closer to a clinically viable solution for
privacy-compliant medical image segmentation across changing domains.
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Fig. 2. Qualitative results of both continual learning settings, using models that have
seen all domains, evaluated on the first domain. First row shows images and predictions
from DecathHip, second row the same for BIDMC. Caption shows DSC performance
of shown slice. FOCUS uses 90% CCD and 5% DFP.
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