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Abstract. Machine learning (ML) models may suffer from significant
performance disparities between patient groups. Identifying such dispar-
ities by monitoring performance at a granular level is crucial for safely
deploying ML to each patient. Traditional subgroup analysis based on
metadata can expose performance disparities only if the available meta-
data (e.g., patient sex) sufficiently reflects the main reasons for perfor-
mance variability, which is not common. Subgroup discovery techniques
that identify cohesive subgroups based on learned feature representations
appear as a potential solution: They could expose hidden stratifications
and provide more granular subgroup performance reports. However, sub-
group discovery is challenging to evaluate even as a standalone task, as
ground truth stratification labels do not exist in real data. Subgroup dis-
covery has thus neither been applied nor evaluated for the application of
subgroup performance monitoring. Here, we apply subgroup discovery for
performance monitoring in chest x-ray and skin lesion classification.We
propose novel evaluation strategies and show that a simplified subgroup
discovery method without access to classification labels or metadata can
expose larger performance disparities than traditional metadata-based
subgroup analysis. We provide the first compelling evidence that sub-
group discovery can serve as an important tool for comprehensive per-
formance validation and monitoring of trustworthy AI in medicine1.
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1 Introduction

Machine learning (ML) models often perform systematically differently across
patient subgroups [18,6,13,15]. This has hampered past attempts at safely de-
ploying medical AI in particular in underserved populations [18,6]. Model per-
formance can depend on many factors [9], including patient attributes (e.g., sex,
1 Code available at https://github.com/alceubissoto/hidden-subgroup-perf

https://github.com/alceubissoto/hidden-subgroup-perf
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age, ethnicity) and image characteristics (e.g., image quality, artifacts, device
manufacturer). Subgroup analysis based on such metadata could identify dis-
parate outcomes in patient groups. However, limited metadata typically exists,
and available metadata may not adequately capture the data’s true variability
nor incorporate concepts important to ML models. Hidden stratifications there-
fore often exist, which can lead to systematic performance disparities that go
unnoticed in the evaluation of ML models [15].

Recently, subgroup discovery methods have emerged for algorithmically iden-
tifying systematically different subgroups in computer vision tasks [7,8,20]. These
techniques appear as a potential solution for more comprehensive model val-
idation as they could expose hidden stratifications and enable more detailed
subgroup performance analyses. However, subgroup discovery is challenging to
evaluate even as a standalone task, as labels for ground truth stratifications in-
herently do not exist in real data. The lack of labels hinders its application to
performance monitoring, for which it remains surprisingly underexplored. As a
result, current evaluation approaches are limited to (1) less realistic synthetic
datasets, where factors of variations can be fully controlled, or (2) measuring
alignment with known characteristics such as patient sex or age, which we real-
istically cannot expect to characterise the main factors of variation in heteroge-
neous data distributions.

In this paper, we apply and evaluate subgroup discovery in the downstream
application of subgroup performance analysis (Fig. 1). While validation remains
challenging, we propose novel evaluation metrics and provide evidence on syn-
thetic and real-world medical image classification tasks that subgroup discovery
can expose systematic performance gaps. We argue that subgroup discovery can
be an effective and easily implemented tool to enhance the performance valida-
tion and monitoring of ML systems in medicine. Our main contributions are:

– We provide the first comprehensive evidence that subgroup discovery can sys-
tematically expose performance gaps in medical imaging, identifying mean-
ingful subgroups in both synthetic and real-world settings.

– We introduce novel metrics to evaluate the quality of discovered subgroups.
– We demonstrate that discovered subgroups exhibit significantly larger perfor-

mance disparities than conventional demographic metadata, revealing criti-
cal gaps missed by traditional fairness auditing.

2 Methods

We seek subgroup divisions that expose large systematic performance gaps of
a target classification model while preserving subgroup cohesion, so that the
model performance in a subgroup can be attributed to a shared characteristic.
Metadata-based subgroups are inherently cohesive since the division is provided
by a semantic concept such as patient age or sex. However, we hypothesise that
these attributes do not adequately reflect the main factors of variation affecting
model performance, which often results in relatively small performance gaps
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Fig. 1: (a) Traditional subgroup analysis detects disparate patient outcomes, but
it is limited to annotated metadata. (b) Subgroup discovery reveals hidden strat-
ifications but lacks performance validation. (c) We bridge this gap by applying
subgroup discovery for performance analysis in both (d) controlled synthetic set-
tings and (e) real-world scenarios with unknown subgroups.

(Fig. 1a). Instead, we propose to use subgroup discovery techniques (Fig. 1b)
for subgroup performance analysis in hidden stratifications (Fig. 1 c).

We propose a two-tiered evaluation approach to tackle the difficult challenge
of validating hidden subgroups. First, we inject synthetic artifacts to create
clinically-inspired subgroups where ground-truth model performance is available
(Fig. 1d). Finally, we propose a strategy to evaluate subgroup discovery for
performance analysis for the first time in a real-world data distribution (Fig. 1 e).

2.1 Preliminaries: Subgroup Discovery Algorithm

We use DOMINO [8], a simple yet effective approach for subgroup discovery.
First, a feature representation z(x) is extracted from each image x using an ex-
ternal pretrained model such as CLIP [16] followed by dimensionality reduction
using principal component analysis. In addition, softmax predictions ŷ(x) are
obtained from the target classification model. While the model predictions en-
capsulate characteristics important for the classification task, the external model
helps identify task-agnostic features such as artifacts. Next, the samples are clus-
tered into subgroups S using a generalised Gaussian Mixture Model (GMM) by
minimising the following objective (similar to [8]):

ℓ(ϕ)=

nsamples∑
i=1

log

|S|∑
j=1

PϕS
(S(j)=1)PϕZ

(Z=z(xi) |S(j)=1)PϕŶ
(Ŷ=ŷ(xi) |S(j)=1)γ , (1)
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where γ balances the influence of predicted labels ŷ(x) and embeddings z(x) in
the slicing decision. In contrast to the original DOMINO [8], we remove clas-
sification labels in the GMM, enabling subgroup discovery in post-deployment
scenarios with unlabeled test sets. We use explicit validation and test sets sepa-
rations, fitting DOMINO on validation, and inferring subgroups on the test set.

2.2 Synthetic scenario with generated artifacts

We first evaluate subgroup discovery in a simulated scenario where ground truth
subgroups and subgroup performances are known. To simulate performance dis-
parities, we add artifacts spuriously correlated with the positive disease label,
similar to standard practice in shortcut learning research [17,2,3,19]. In particu-
lar, we introduce a simulated scenario where we synthetically add two artifacts
independently correlated with the label: one is a known attribute for traditional
subgroup analysis, but the other is hidden and could potentially be exposed by
subgroup discovery. The artifacts are inserted on positive samples with proba-
bility, or bias level, p, and on negative samples with probability 1− p, resulting
in four ground truth subgroups. Training and validation sets are generated from
this biased version of the data and are used for training the target classification
model and selecting its hyperparameters. The validation set is also used to fit
DOMINO. For testing, we use an unbiased test set (p = 0.5), facilitating fair
comparisons across training bias levels.

2.3 Real-world data distribution: unknown hidden stratifications

Next, we assess the ability of subgroup discovery to reveal hidden performance
gaps in real-world data where no labels exist for hidden stratifications. Follow-
ing the same procedure as in the synthetic setting, we train the target clas-
sification model and DOMINO based on the training and validation set and
infer subgroups on the test set. In the absence of ground truth labels for hid-
den subgroups, we use measured metadata (e.g. patient age, sex) as a baseline
stratification method, which reflects current standard practice for subgroup per-
formance analysis. Each metadata attribute (e.g. patient sex) defines a different
subgroup division (male vs. female), assigning each sample its corresponding at-
tribute performance. We average the performance values across all its metadata
attributes to obtain an overall performance metric for each sample. For subgroup
discovery, we can extend the same idea to marginalize over the stochastic effects
caused by the use of different random seeds, providing a more robust estimation
of the discovered subgroup performances.

2.4 Evaluation metrics

An ideal stratification leads to subgroups with systematic performance differ-
ences. Identifying large performance gaps across cohesive groups may provide
actionable insights into the failure modes of the target classification model. We
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propose two new metrics to evaluate the quality of discovered subgroups: perfor-
mance gap and average purity. We measure the performance gap of a subgroup
division S as ∆(S) = maxs∈S M(s) − mins∈S M(s), where M(s) is the model
performance in subgroup s, e.g. accuracy. Average purity measures subgroup
cohesion by calculating how well subgroups align with known attributes, such
as the presence of artifacts or patient characteristics. For subgroup s, let ns,a

be the number of samples with attribute a and ns the total samples. The pu-
rity of s is the fraction of samples in its majority attribute, corrected by a
term c for robustness to small subgroups. Then, the average purity is given by
AP (S) = 1

|A|
∑

a∈A maxs∈Sa

(
ns,a

ns+c

)
, where Sa is the set of subgroups whose

majority attribute is a.

2.5 Datasets

We selected datasets that provide comprehensive coverage of metadata. CheXpert-
Plus [5] is an extension of CheXpert [11] and provides metadata that allows for
a challenging comparison to our discovered subgroups. The metadata includes
patient demographics (e.g., sex, age), comorbidities (e.g., edema, fracture), and
artifacts, totalling 20 attributes. Our training, validation, and test set follow an
80/10/10 division, with a total of 178,684 / 22,263 / 22,281 images respectively.

SLICE-3D [14] is a recent skin lesion classification dataset. Apart from pa-
tient details (e.g., sex, age), it includes lesion-specific visual traits, enabling anal-
ysis of subgroups aligned with diagnostic-relevant features (e.g., lesion hue and
size). Due to the dataset’s imbalance, we allocated more samples to the valida-
tion and test sets to ensure an adequate number of positive cases. We divided
Patient IDs in a 60/20/20 scheme, resulting in 252,047 / 80,516 / 68,496 images.

While we use both datasets for our real-world experiments, we adapt CheX-
pertPlus with two clinically-inspired artifacts following previous work [19] (Fig.
1b): a hospital tag on the bottom left, and vertical lines of hyperintense signal.

3 Results

3.1 Experimental setup

For all experiments, we trained ResNet-50 [10] classification models using SGD
and searched over learning rates of {10−5, 10−4, 10−3} with the weight decay of
10−4. Models were selected based on validation balanced accuracy for CheXpert-
Plus and thresholded AUC for SLICE-3D. For CheXpertPlus, we chose the task
of “cardiomegaly vs. all”, while for SLICE-3D we followed the original problem
of “malignant vs. benign”. For subgroup discovery, we always used 15 subgroups.
The external model is the pretrained CLIP [16] for all scenarios, and we included
BiomedCLIP [21] for our real-world CheXpertPlus experiments. In the synthetic
scenario (Sec. 2.2), we considered hyperintensities as a known attribute and hos-
pital tags as a hidden stratification and varied the bias level p between 0.6, 0.7,
0.8. We use accuracy as our primary metric for measuring performance gaps and
subgroup performances.
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Fig. 3: Detailed subgroup accuracies for our synthetic scenario. Purer subgroups
performances (darker dots) capture the true performance gap characterized by
hidden subgroups, which are overlooked by traditional subgroup analysis with
access to a single artifact (known subgroups), and by overall performance.

3.2 Subgroup discovery uncovers large performance disparities
while maintaining cohesive subgroups

Across all experiments in both synthetic (Fig. 2) and real-world settings (Fig. 4a,
c), subgroup discovery consistently exposed performance gaps larger than tradi-
tional subgroups (red dash line in Figs. 2a-c) without sacrificing cohesion. While
the performance gap and purity competed, performance gaps increased before
purity declined when increasing γ. This allowed substantial performance dispar-
ities to be exposed without sacrificing the cohesiveness of the subgroups. We
chose the “elbow” point before a sharp purity decrease, resulting in γ = 10 for
synthetic and real-world CheXpertPlus, and γ = 50 for the SLICE-3D, as shown
in Figs. 2 and 4a, c.

3.3 Subgroup discovery captures actual subgroup performance

In our synthetic scenario with one known and one unknown artifact, subgroup
analysis based on the known artifact unsurprisingly revealed increasing perfor-
mance gaps when increasing the bias level from 0.6 to 0.8, but missed the much
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Fig. 4: (a,c): Performance gaps and metadata-based purity for different γ. (b,d):
Histograms of subgroup performances for different subgroup divisions: In blue,
subgroup discovery with different external CLIP models, averaged over different
random seeds (gray transparent bars). In red, our baseline of subgroups defined
by different metadata, averaged over their attributes (gray). Top (a,b) and bot-
tom (c,d) rows show CheXpertPlus and SLICE-3D results, respectively.

larger, hidden performance gaps caused by the second artifact (Fig. 3a-c). Sub-
group discovery without access to either artifact annotations successfully found
subgroups that captured the hidden subgroup performances (dots in Fig. 3a-c).

As our simulated artifacts were added to real data where factors unknown
to us could additionally affect performance, discovered subgroups exposed addi-
tional performance disparities. For example, in Fig. 3b, one discovered subgroup
neither aligned with the hidden subgroups in terms of performance, nor in terms
of purity (reflected by light grey colour).

3.4 Subgroup discovery exposes higher performance gaps than
traditional subgroup analysis in real-world scenarios

Finally, we applied subgroup discovery for performance analysis in two real-world
applications without artificial artifacts in chest x-ray and skin lesion analysis. In
both cases, hidden biases were likely present but not annotated [12,4]. Subgroup
discovery identified higher performance gaps than traditional metadata-based
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analysis (see performance histograms in Fig. 4b, d). On CheXpertPlus (Fig. 4b),
subgroup discovery consistently found underperforming subgroups with less than
60% accuracy, while the majority of subgroups achieved around 90% accuracy. In
contrast, metadata-based analysis did not expose such low-performing subgroups
and led to a narrower range of performances overall. For skin lesion analysis,
subgroup discovery found a subgroup with 721 negatives and 17 positives with
only 5% accuracy (Fig. 4d).

3.5 Discovered subgroups in real-world scenarios do not capture
patient demographics, but align well with visual features

In the CheXpertPlus dataset, the discovered subgroups did not align well with
concepts described by the available metadata, leading to subgroups with low
purity concerning attributes such as patient sex, age or ethnicity (Fig. 4a). This
confirms that available metadata often does not reflect the main factors of vari-
ability in real-world data distributions.

In contrast, the SLICE-3D skin lesion dataset contained annotations of vi-
sual features such as lesion area or colour. The discovered subgroups were well
stratified by these visual features. This was reflected by high purity across a
wide range of DOMINO configurations (Fig. 4 c). Demographic attributes such
as patient sex remained at a low purity level, similar as in the CheXpert ex-
periments. While some annotated lesion characteristics (e.g. area, colour) are
related to lesion malignancy [1], subgroup analysis based on these attributes did
not expose the performance disparities we observed with discovered subgroups.

3.6 Feature extractors trained on natural images are sufficient for
exposing meaningful performance gaps

Finally, we used BiomedCLIP [21] as a feature extractor for subgroup discovery
in CheXpert to investigate whether representations learned from biomedical data
led to better stratification of disease-related features in medical images. However,
BiomedCLIP and original CLIP led to similar subgroup purities (Fig. 4a) and
performance disparities (Fig. 4a, b). This indicates that even feature extractors
trained on natural images can expose meaningful performance gaps in real-world
data distributions, where factors of variation may be more visually subtle than
the simulated artifacts we introduced in our synthetic experiments.

4 Discussion

We demonstrate that hidden stratifications in synthetic and real-world data can
lead to performance disparities, which often cannot be detected by traditional
metadata-based subgroup analysis. Meanwhile, subgroup discovery exposed sub-
stantial and systematic performance disparities between cohesive subgroups.
In the synthetic scenario, discovered subgroups accurately captured artificial
ground truth subgroups (Sec. 3.3). In real-world data, where the true factors of
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variation in data might be more visually subtle, we showed evidence that the fac-
tors guiding subgroup discovery are not necessarily low-level perceptual features
(Sec. 3.5). For skin lesion analysis, the lesion color, which is clinically relevant
for the diagnosis of melanoma, indirectly influenced the subgroup discovery, re-
sulting in high average purity. While no ground truth stratification labels exist
for real data, our results were robust and consistent across datasets, hyperpa-
rameter configurations and random seeds. We conclude that subgroup discovery
should be highly relevant as a performance monitoring and reporting tool, and
argue that it should accompany traditional subgroup analysis as an additional
safeguard during real-world ML validation and deployment.

Future work could further investigate subgroup discovery robustness, facili-
tating their adoption by ML practitioners. Beyond their use in safe deployment,
our subgroup performance analysis approach could be useful for developing unbi-
ased ML models. There, discovered subgroups could replace or augment existing
subgroup labels, e.g. when reporting worst-group performance.
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