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Abstract. Reconstruction of standard-dose Positron Emission Tomog-
raphy is vital for clinical diagnosis, while recent diffusion-denoising prob-
abilistic models offer strong generative capabilities, when applied to this
task, they often struggle with fine detail recovery, slow inference, and
inadequate cross-slice continuity in 3D volumes. To overcome these is-
sues, we introduce WiD-PET, which employs a wavelet transform to
produce smaller wavelet-transformed inputs, and thereby reduces infer-
ence time to 10% of that required by the DDPM model. Additionally, a
high-frequency enhancer is adopted for reconstructing fine and rich im-
age details. Moreover, a spatial consistency feature extractor and spatial
consistency attention are implemented to enhance cross-slice continuity
in 3D PET reconstructions. Evaluations across dose levels (1/20, 1/50,
and 1/100) reveal that WiD-PET consistently achieves superior recon-
struction quality, detail preservation, and inference efficiency. Project
page: https://github.com/SwingM/WiD.git.

Keywords: Positron Emission Tomography (PET) · Diffusion Model ·
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1 Introduction

Positron emission tomography (PET) is essential for assessing human metabolism,
yet high-quality PET imaging requires high radiotracer doses, increasing radia-
tion risks. Lower dose leads to a lower signal-to-noise ratio of the PET image,
thereby, reducing diagnostic accuracy, especially for ultra-low-dose levels (e.g.,
1/50 or 1/100). Reconstruction of standard-dose PET (SPET) from low-dose
PET (LPET) is crucial.

Some GAN-based methods have been proposed for PET image reconstruc-
tion, including GAN-based PET synthesis [9], cycle-GAN approaches [21,22],
and specialized variants. For example, EA-GAN [20] incorporates an edge de-
tector to improve edge quality, and AR-GAN [12] uses adaptive rectification
with spectral constraints. Other innovations include PCC-GAN [4] with point
context clustering, StillGAN [13] with structure and illumination constraints,
and MRI-CGAN [2,18] that leverages MRI as auxiliary information. However,
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Fig. 1. Overall workflow of WiD-PET. (a) illustrates the complete process, while
(b)–(f) depicts individual modules. Please see Section 2.2 for more explanations.

GAN-based methods often suffer from adversarial training instability and mode
collapse [14,16], resulting in low discriminability of the generated samples.

Diffusion Denoisingn Probabilistic Models (DDPM) [8] have recently sur-
passed GAN-based approaches in medical image reconstruction, and many works
in the field are published [3,6,15]. While effective, when applied to SPET re-
construction, diffusion models face at least three key challenges. First, their
iterative sampling process is computationally expensive, particularly for high-
resolution inputs, resulting in significantly slower inference speeds compared to
GAN-based models. Second, traditional diffusion models uniformly denoise in
the image space, often failing to recover fine details, as textures and edges in
ultra-low dose PET (UDPET) images—corresponding to high-frequency compo-
nents—are particularly prone to degradation. Third, models originally designed
for 2D images, typically process slices independently, neglecting spatial consis-
tency across slices and resulting in incoherent reconstructions.

To address the limitations of existing diffusion-based models for dose-less
PET imaging, we propose a novel framework, the Wavelet-informed Diffu-
sion Model with Fast Inference (WiD-PET), which introduces several
innovative contributions. First, by utilizing wavelet transformations and a high-
frequency enhancer (HFE) module, WiD-PET focuses on reconstructing fine
image details and synthesizing SPET images through the integration of these en-
hanced details with the global contrast produced by DDPM. Second, processing
wavelet-transformed inputs allows WiD-PET to focus on critical image features



and reduces inference time by an impressive 90% compared to the 2D-DDPM.
Third, to ensure spatial coherence across 3D PET slices, WiD-PET incorporates
a spatial consistency feature extractor (SCFE) and spatial consistency attention
(SCA), enabling seamless and accurate reconstructions. Extensive testing on var-
ious dose levels (1/20, 1/50, and 1/100) confirms WiD-PET’s ability to deliver
superior reconstruction quality, detail preservation, and outstanding efficiency.

2 Method

2.1 Preliminary

Denoising Diffusion Probabilistic Models (DDPM) provide a framework for im-
age reconstruction [8]. Let the SPET and LPET image sets be XG = {xG

i }Ni=1

and XL = {xL
i }Ni=1, respectively, with xG

i ,x
L
i ∈ RH×W×C . In our framework,

the generation of xG is conditioned on the LPET image and a spatial sequence
S (adjacent slices before and after current slice), denoted as C = {ci}Ni=1. Here,
we omit the subscript i for brevity and denote the timestep as t. In a conditional
setting (cDDPM), the forward process adds noise as:

q(xG
t | xG

t−1) = N (xG
t ;

√
αtx

G
t−1, βtI), (1)

with αt = 1− βt. The reverse process denoises iteratively:

pθ(x
G
t−1 | xG

t , c) = N
(
xG
t−1;µθ(x

G
t , t, c), Σθ(x

G
t , t, c)

)
. (2)

Wavelet Transformation decomposes an input image ψ ∈ RH×W×C into fre-
quency bands LL,LH,HL,HH ∈ RH

2 ×W
2 ×C via:

fdwt(ψ) = {LL,LH,HL,HH}, (3)

2.2 Overview

An overview of the proposed WiD-PET framework is illustrated in Figure 1(a).
First, SPET images, along with the LPET condition and its adjacent slices (spa-
tial sequence), are decomposed using the Haar 2D discrete wavelet transform
(DWT) module, leading to the low-frequency component LLx and the high-
frequency components [LH,HL,HH]x, where the subscript x = g, c, S indicates
the ground-truth SPET image, the LPET condition, and the spatial sequence
of LPET, respectively. The low-frequency component LLg undergoes a forward
diffusion process, then it is combined with the condition LLc and passed to the
denoising model (Fig. 1(b)), LLS is also used as a condition to provide spatial
consistency guidance. The spacial consistency guidance is processed through a
spatial consistency feature extractor block (SCFE) followed by a spacial consis-
tency attention module (SCA) to steer the denoising process effectively. At the
other hand, the high-frequency components are refined using a High-frequency
Enhancer (HFE) to restore fine details and textures. Finally, the enhanced high-
and reconstructed low-frequency components are re-composed back to the re-
constructed image using the inverse discrete wavelet transform (IDWT).



2.3 Fast Wavelet-informed Diffusion Architecture

Our framework consists of a DWT-IDWT module, a Spatial Consistency De-
noising Model, and a High-frequency Enhancer module.

DWT-IDWT Module: As aforementioned, our approach employs a DWT-
IDWT module (Fig. 1(f)) to decompose the input SPET ground truth, LPET
condition, and spatial sequence S into low-frequency (LLg, LLc, LLS) and high-
frequency ([LH,HL,HH]g, [LH,HL,HH]c, [LH,HL,HH]S) components. This
decomposition reduces each component’s size from C×H×W to C×H

2 ×
W
2 , effec-

tively scaling down the input by a factor of 4. Using wavelet-decomposition mod-
ules has been demonstrated to efficiently reduce the input image’s scale, thereby
lowering inference time demands [5,10,11]. Here, the low-frequency component
of SPET (LLg) undergoes forward diffusion and is fused with LPET’s low-
frequency component (LLc) to reconstruct the global contrast via the denois-
ing model, while LPET’s high-frequency components are enhanced through the
HFE for fine details. Finally, the outputs are recombined through the IDWT.

Spatial Consistency Denoising Model: The denoising model reconstructs
noise-free images from low-frequency inputs using a self-attention U-Net with
spatial sequence guidance LLS (Fig. 1(b)). leveraging spatial information is crit-
ical for PET image generation. However, previous works have been insufficient
in this regard, as they either employed simple convolutional networks or directly
fed adjacent slices into the denoising model [7,19]. Our approach introduces a
spatial consistency-informed denoising model featuring two novel modules: the
spatial consistency feature extractor (SCFE) and the spatial consistency at-
tention (SCA). These modules exploit adjacent slices to better capture spatial
continuity, overcoming limitations of existing 2D-based diffusion and GAN mod-
els. Each encoder layer in the denoising model comprises a convolution block,
the SCFE module, the SCA module, and a Resblock, while the bottleneck and
decoder layers remain consistent with those in DDPM. The SCFE and SCA
modules are detailed in the following sections.
Spatial Consistency Feature Extractor (SCFE)(Fig. 1(d)) takes three in-
puts: the convolution of the output from the previous encoder layer F̂ l−1 =
CONV(F l−1), the spatial consistency guidance LLS , and the time embedding
of the current time step. When l = 1, F l−1 = F 0 = CONCAT(LLnoise

g ,LLc)

(LLnoise
g is the noise-corrupted version of LLg). SCFE employs a residual con-

volutional network for processing. To begin, the spatial sequence LLS is aligned
with F l−1 using a 1×1 convolution and then concatenated with F̂ l−1). A special-
ized extraction block, consisting of multiple convolutional layers, extracts spatial
consistency information by performing feature fusion and iterative noise adjust-
ment. This extraction operation is applied twice within the SCFE to ensure
robust feature refinement. At the final stage, the extracted spatial consistency
features are integrated with the original input feature F̂ l−1 through a residual
connection, preserving the input’s integrity while enhancing it with the extracted
spatial information. Then the features are passed to SCA for further processing.



Spatial Consistency Attention (SCA) (Fig. 1(e)) enhances spatial feature
extraction by leveraging multi-scale convolutional kernels and normalized at-
tention weights. The input spatial features are first divided into v subgroups
along the channel dimension, where v corresponds to the number of slices in
the spatial sequence. Each subgroup is then processed by convolutional blocks
with kernels of varying sizes to capture multi-resolution features effectively. The
outputs of these convolutions are passed through a global pooling layer, followed
by a weight generator consisting of fully connected layers, and finally normalized
using a SoftMax layer to produce attention weights. The normalized attention
weights are applied to the corresponding sub-groups of the convolutional out-
puts, and the weighted features are subsequently multiplied and refined. The
weighted outputs from all sub-groups are concatenated as the module output.

High-frequency Enhancer: Employing a residual convolutional structure, our
High-frequency Enhancer is a lightweight module aiming at enhancing details of
LPET by integrating information across different high-frequency components. It
takes [LH,HL,HH]c as the input. First, the pairs [LH,HL]c, and [HL,HH]c
are processed through cross-attention blocks to capture interactions between
high-frequency components. Next, both LHc, HLc, and the concatenation of
cross-attention outputs undergo dilated convolution blocks. The resulting fea-
tures are concatenated, passed through a depth convolution layer, and is con-
catenated with [LH,HL,HH]c via a residual link.

2.4 Loss Function

We design a comprehensive loss function that incorporates multiple components
to optimize the reconstruction process. We defined the noise loss as Lnoise =
∥n− n̂∥22, minimizes the discrepancy between the Gaussian noise n added during
the forward diffusion process and the predicted noise n̂. The reconstruction loss
is given by Limg = ∥xG − x̂G∥1, where xG is the SPET ground-truth and x̂G is
the reconstruction PET image.

To enhance fine details and preserve high-frequency information, we intro-
duce a high-frequency loss Lhf, which combines an ℓ2 loss for the high-frequency
components with total variation (TV) regularization, defined as:

Lhf = λℓ2∥xhf − x̂hf∥22 + λtv TV(x̂hf), (4)

where λℓ2 and λtv are the weights balancing the ℓ2 loss and total variation loss.
Here xhf is the concatenation of the high-frequency components of the SPET
image, served as the ground-truth, and x̂hf represents the high-frequency output.

The overall loss is then defined as:

L = Lnoise + Lhf + Limg. (5)

3 Experiments and Results

Dataset:The dataset used in this study is from the Ultra Low-Dose PET Imag-
ing (UDPET) challenge [17] and consists of 560 18F-FDG PET scans with cor-



responding low-dose images acquired at various time reductions. Data were col-
lected from 230 Siemens and 330 United Imaging subjects. Each brain scan has a
resolution of 128× 128× 128 with pixel spacings of [1.65mm, 1.65mm, 1.65mm]
(Siemens) and [1.667mm, 1.667mm, 2.886mm] (United Imaging), and are used
for testing and validation across protocols and scanner types. These brain images
were split into training and test sets in a 3:1 ratio.
Experiment Details: We utilizes 1/20, 1/50, and 1/100 doses (ultra-low dose)
of LPET images as the input, corresponding to normal-dose SPET as the ground
truth. The framework is implemented using the PyTorch library and executed
on an NVIDIA RTX 3090 GPU. During the training stage, random cropping
and flipping are applied to the input images as data augmentation. The initial
learning rate is 1× 10−4 and the decay factor is 0.8 for every 5000 iterations.
Evaluation Metrics: To assess reconstruction quality, we compare our method
with baselines using PSNR, SSIM, and NMSE. PSNR measures pixel differ-
ences (higher is better), SSIM evaluates perceptual quality, and NMSE quantifies
overall error (lower is better). To further assess image detail recovery, we employ
Gradient Loss, which emphasizes local structures and edges through first-order
intensity changes, and Brenner Gradient Loss, which captures intricate tex-
tures and sharpness using second-order variations. Meanwhile, we measure the
inference time of the model by calculating the average time to infer a full SPET
3D image from whole brain LPET slices.

3.1 Experimental Results

Table 1 shows a quantitative comparison of our method against baselines: LPET,
2D-DDPM[8], 3D-DDPM(cWDM) [5], Still-GAN[13], CDM-GAN[7], and PET-
Unet[1]. These were chosen for their publicly available code.

Table 1. Quantatitive comparison results.

Methods
1/100 dose 1/50 dose 1/20 dose Inference Time

(s/128 slices)PSNR SSIM NMSE (×10−4) PSNR SSIM NMSE (×10−4) PSNR SSIM NMSE (×10−4)

Low dose[17] 15.46 ± 5.75 0.46 ± 0.007 22.02 ± 9.78 21.70 ± 5.54 0.70 ± 0.004 22.73 ± 7.04 22.72 ± 5.18 0.77 ± 0.001 4.02 ± 3.96 –

2D-DDPM[8] 22.68 ± 4.82 0.76 ± 0.003 7.27 ± 1.77 25.86 ± 3.10 0.86 ± 0.002 5.62 ± 0.45 26.11 ± 2.69 0.92 ± 0.001 3.27 ± 0.77 268.00

3D-DDPM(cWDM)[5] 25.16 ± 4.39 0.85 ± 0.005 14.10 ± 6.10 27.40 ± 6.19 0.90 ± 0.001 4.20 ± 1.11 28.81 ± 2.85 0.93 ± 0.001 6.10 ± 0.81 108.05

Still-GAN[13] 23.61 ± 3.94 0.83 ± 0.003 9.69 ± 9.35 24.48 ± 2.66 0.85 ± 0.002 7.04 ± 1.91 25.63 ± 2.60 0.90 ± 0.001 3.96 ± 0.64 26.12

CDM-GAN[7] 23.95 ± 4.47 0.84 ± 0.005 12.62 ± 11.16 26.80 ± 2.73 0.85 ± 0.001 3.80 ± 0.39 28.84 ± 2.61 0.91 ± 0.001 3.12 ± 0.60 25.24

Pet-Unet[1] 23.30 ± 3.09 0.81 ± 0.003 8.43 ± 0.63 24.33 ± 2.62 0.84 ± 0.002 6.29 ± 0.40 27.93 ± 2.60 0.91 ± 0.001 2.60 ± 0.77 2.02

WiD-PET(Ours) 26.68 ± 3.08 0.89 ± 0.001 3.60 ± 0.58 27.82 ± 2.53 0.91 ± 0.001 3.11 ± 0.35 29.93 ± 2.55 0.94 ± 0.001 1.85 ± 0.56 20.24

p-value (Pair-T with the second-best) 6e-4 3e-4 6e-4 3e-4 1e-4 1e-5 3e-5 1e-5 3e-5 –

Overall Quality As shown in Table 1, all comparison methods significantly
improve the quality of LPET images. Among them, our proposed method con-
sistently achieves superior performance across 1/20, 1/50, and 1/100 dose levels.
Taking the 1/100 dose level (ultra-low dose) as an example, our WiD-PET signif-
icantly enhances the PSNR/SSIM/NMSE values from 15.46/0.46/22.02 of LPET
to 26.68/0.89/3.60 in the reconstructed SPET images. This represents a substan-
tial improvement over the second-best performer, 3D-DDPM, which achieves



25.16/0.85/14.10. Paired t-test results confirm that the improvements in our
method are statistically significant (p<0.05). Meanwhile, among 2D methods,
although the general-purpose 2D diffusion-based model 2D-DDPM outperforms
the 2D GAN-based StillGAN, both fall short compared to the specialized 2D-
PET reconstruction model, CDM-GAN. In contrast, WiD-PET demonstrates
superior performance at enhancing high-frequency details while leveraging spa-
tial consistency across slices to reduce artifacts and improve visual smoothness.

(a) Gradient Loss Comparison (b) Brenner Gradient Loss Comparison

Fig. 2. Comparison of (a) Gradient Loss and (b) Brenner Gradient Loss.

Detail Recovery To assess high-frequency detail preservation, we evaluate
gradient loss and Brenner gradient loss, which measure local structure and
edge recovery via first- and second-order differences. As shown in Fig. 2, WiD-
PET achieves the lowest losses across all dose levels. At moderate doses (1/20
and 1/50), diffusion-based models (2D-DDPM, 3D-DDPM, and WiD-PET) out-
perform GAN-based methods in capturing fine details. However, at the ultra-low
dose (1/100), both vanilla 2D- and 3D-DDPM struggle—especially 2D-DDPM,
which shows a significantly higher loss. In contrast, WiD-PET’s tailored strate-
gies substantially enhance detail recovery.
Inference Speed Our WiD-PET demonstrates remarkable efficiency during
inference. As shown in Table 1, we achieved a 10-fold speedup in 2D-DDPM,
making it 5 times faster than the wavelet-informed 3D-DDPM. This speed
surpasses both GAN-based models and is second only to Pet-Unet, which, despite
its faster inference, delivers significantly inferior reconstruction quality.
Visual Comparison A visual comparison in Fig. 3 further confirms that our
reconstructions are sharper and more detailed, closely resembling the ground
truth. These findings align with our quantitative analysis.
Ablation studies: We conducted ablation studies (Table 2) to assess the con-
tributions of individual components. Starting from a vanilla 2D-DDPM (Base
Model), adding the wavelet transform with the HFE improved reconstruction
quality. Incorporating Spatial-consistency guidance via the SCFE and SCA mod-
ules further enhanced performance, and the introduction of a high-frequency loss
term provided additional gains. The full integration of these components in WiD-
PET yields the best overall results, validating the contribution of each module.
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Fig. 3. Visual comparison of reconstruction results of 2D-methods.

Table 2. Results of ablation experiments on both dose levels from the UDPET dataset.
We removed the wavelet transformation components, SCFE, and high-frequency loss
from the base diffusion model to assess the performance impact.

Components 1/100 dose 1/50 dose 1/20 dose

Base Model Wavelet Transform
and Enhancer

Spatial
Guidance

High-frequency
Loss PSNR SSIM NMSE (×10−4) PSNR SSIM NMSE (×10−4) PSNR SSIM NMSE (×10−4)

✓ · · · 22.68 0.76 7.27 25.86 0.86 5.62 26.11 0.82 3.27

✓ ✓ · · 25.19 0.79 6.50 25.26 0.86 5.47 28.33 0.71 2.30

✓ ✓ ✓ · 25.41 0.79 5.81 25.28 0.79 5.18 28.58 0.84 2.24

✓ ✓ · ✓ 25.91 0.86 4.63 26.16 0.87 4.57 28.69 0.92 2.22

✓ ✓ ✓ ✓ 26.68 0.89 3.60 27.82 0.91 3.11 29.93 0.94 1.85

4 Conclusion

In this paper, we tackle three challenges in SPET reconstruction from LPET
inputs with our novel wavelet-informed fast diffusion framework. By integrating
Haar discrete wavelet transformation and a high-frequency enhancer, we largely
reduce inference time and improve detail recovery. Additionally, our spatial con-
sistency modules (SCFE and SCA) enhance spatial continuity. Our proposed
method, WiD-PET, consistently outperforms state-of-the-art approaches across
different dose levels, demonstrating superior quality and generalizability.
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