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Abstract. Significant progress has been made in Al-based prediction
of therapeutic response to neoadjuvant chemotherapy (NAC) in breast
cancer. However, current studies primarily rely on data from a single
time point, neglecting the dynamic changes in tumor characteristics dur-
ing treatment. To address this limitation, we propose a novel Dynamic
Temporal Feature Difference Fusion (DTFDF) framework, which inte-
grates image features from multiple time points throughout the treat-
ment process to predict therapy response more precisely. Based on tu-
mor spatial features, we design an innovative DTFDF strategy and in-
troduce a treatment response-based triplet contrastive loss function to
facilitate the learning of longitudinal tumor changes and enhance fea-
ture representation. Additionally, we incorporate biomarker prediction
as an auxiliary task and introduce a feature decoupling-based multi-
task learning module. This module generates feature representations
for different tasks by accounting for both shared and task-specific in-
formation, improving response prediction. Experiments with data from
786 patients in the I-SPY 2 trial dataset demonstrate that our method
achieves the highest AUC of 0.835 in predicting radiation therapy re-
sponse, outperforming state-of-the-art (SOTA) approaches on longitudi-
nal dynamic contrast-enhanced MRI data. Our source code is available
at https://github.com/AlexNmSED/DTFDF.

Keywords: Longitudinal Medical Image Analysis - Temporal Feature
Difference Fusion - Contrastive Loss.

1 Introduction

Unlike single time-point medical image analysis, longitudinal medical imaging
captures changes over time, which is crucial for various medical applications,
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such as disease prediction, treatment response assessment, and prognosis model-
ing [5,13]. The trajectory of biomarker changes during treatment reflects tumor
temporal heterogeneity, a key factor in predicting the neoadjuvant chemother-
apy (NAC) response in breast cancer patients. Achieving pathological complete
response (pCR) after NAC is the most desirable outcome and serves as a strong
predictor of long-term survival for patients [2]. Additionally, accurate preopera-
tive assessment of pCR can guide clinical decisions regarding surgical operations.
The high heterogeneity of breast cancer exists throughout the various stages of
NAC. The structural and functional changes in the tumor microenvironment
during NAC can reflect the patient’s treatment response and contain poten-
tial prognostic factors [8]. Although data from a single time-point are easier
to acquire, they fail to capture dynamic changes during NAC and cannot fully
characterize tumor heterogeneity. Therefore, integrating longitudinal imaging in-
formation to fully assess biological changes in breast cancer patients is essential.

Previous artificial intelligence (AI)-based methods for predicting the response
to NAC in breast cancer have primarily focused on constructing models using
single time-point imaging features, overlooking the dynamic monitoring of tu-
mor temporal heterogeneity during the treatment process [4]. Recently, some
studies have shown that incorporating longitudinal imaging data offers a more
comprehensive understanding of disease progression, thereby enhancing predic-
tive performance [15,17]. For example, Zhou et al. [19] employed contrastive
disentangled representation learning to classify longitudinal CT radiomics fea-
tures into shared and stage-specific categories. They utilized cycle cross-entropy
loss to ensure feature consistency and contrastive disentanglement loss to sepa-
rate shared and unique features. Additionally, several studies have explored deep
feature fusion, highlighting the importance of integrating longitudinal imaging
data. By combining multi-time-point information into a unified representation,
these approaches effectively capture disease progression dynamics. Feature fusion
strategies usually include sequential models and cross-attention mechanisms. In
particular, time-series models like LSTM have been applied to predict treatment
response and perform survival analysis using evolving clinical and imaging fea-
tures [15,12,3]. Hu et al. [6] and Holste et al. [5] proposed VGG-TSwinformer and
the longitudinal survival analysis transformer, respectively. Both studies lever-
aged the attention mechanism of Transformers to integrate longitudinal imag-
ing data and improve disease prediction. Although the aforementioned studies
demonstrate the potential of longitudinal medical imaging in evaluating the ef-
ficacy of breast cancer treatment, they merely fuse longitudinal image features
along the time dimension, either through time-series models or cross-attention
mechanisms. They neglected dynamic changes at different time points and failed
to characterize the role of these changes in assessing the efficacy of therapy.

Motivated by the aforementioned challenges, we propose a novel DTFDF
framework that integrates longitudinal imaging data via a treatment response-
based triple contrastive loss (TR-TCL) to predict the neoadjuvant treatment
response for breast cancer patients. Our main contributions include: (1) Built
upon multi-stage spatial feature fusion, we develop an innovative longitudinal



Fusing dynamic temporal feature differences from longitudinal MRI 3

TR-TCL: Treatment Response-based Triple Contrastive Loss
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Fig. 1. Illustration of our proposed DTFDF framework. (a) Architecture of our DTFDF
model. (b) DTFDF module. (¢) STFAM module. (d) FDMTL module. (e) Feature
decoupling module. (f) Examples of DCE-MRI samples.



4 Hao et al.

medical image feature fusion strategy; (2) We introduce the TR-TCL to capture
the subtle changes in tumor features along the timeline during treatment; (3)
We propose a feature decoupling-based multi-task learning (FDMTL) strategy
to further improve the prediction ability. Experimental results on the breast
dynamic contrast-enhanced (DCE) MRI Trial (I-SPY 2) demonstrate that our
method outperforms SOTA longitudinal image analysis methods. Our DTFDF
model can be easily extended to other longitudinal medical image analysis frame-
works for the personalized diagnosis of other diseases.

2 Method

Fig. 1(a) illustrates the architecture of our proposed DTFDF, which consists of
several different modules: the multi-stage spatial feature fusion module (MSSFF-
M), the dynamic temporal feature difference fusion module (DTFDF-M), and the
feature decoupling-based multi-task learning module (FDMTL-M). Additionally,
we introduce the TR-TCL to enhance the capability of MSSFF-M to recognize
spatial feature disparities between during-treatment and post-treatment DCE-
MRI of breast cancers. Details of different modules are provided below.

Multi-Stage Spatial Feature Fusion Module (MSSFF-M). As illustrated
in Fig. 1(a), MSSFF-M extracts features from multi-stage DCE-MRI, including
pre-treatment (T0), inter-treatment (T1, T2), and post-treatment (T3). It con-
sists of structurally identical yet independent components, sharing parameters
between the pre-treatment and inter-treatment stages. MSSFF-M incorporates
the HiFuse block [7], which employs a hierarchical parallel fusion structure to
integrate local features and global representations at different scales, leveraging
the strengths of both CNNs and Transformers. Global feature extraction utilizes
Windows-based Multi-head Self-Attention (W-MSA & SW-MSA) modules [11],
while local feature extraction employs depthwise separable convolutions with
skip connections [1], effectively reducing computational demands.

Treatment Response-based Triple Contrastive Loss (TR-TCL). Triple
Contrastive Loss (T'CL) [18] optimizes the embedding space by minimizing the
distance between anchor and positive samples while maximizing the distance
between anchor and negative samples. In the NAC process for breast cancer
patients, achieving pCR signifies complete tumor regression after treatment,
whereas non-pCR patients exhibit limited or even progressive tumor regression.
Therefore, we categorize pre-treatment and post-treatment DCE-MRI images
of pCR patients as "with changes", while those of non-pCR patients as "no
changes". Let Xpaten = {X1, X2, ..., Xn } represent a mini-batch of patients. For
each patient X;, we extract the spatial feature F} .. from the pre-treatment
DCE-MRI and the spatial features at three treatment time points using the
MSSFF-M. To optimize the MSSFF-M, we introduce the TR-TCL as follows:

L(fa, fp, fn) =max (||fa — fpII* = [Ifa — fn|* + ,0), (1)
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where f4 denotes the post-treatment spatial feature F; p,s¢, serving as the an-
chor; fp denotes the feature of a positive sample, corresponding to DCE-MRI
representations classified as "no changes", while fy denotes the feature of a
negative sample, whose representations are classified as "with changes". The
Euclidean distance is computed between the anchor and positive/negative sam-
ples. The « in Eq. (1) defines the boundary threshold for separating positive
and negative samples during the comparison process, which is set as 0.2 follow-
ing [21]. In this study, if a patient achieves pCR, the pre-treatment spatial feature
Fj pre is assigned as the negative sample feature. To select the positive sample
for this patient, we choose the sample that has the maximum distance between
F; post and post-treatment features of all positive samples. When a patient does
not achieve pCR, the positive sample selection follows the same strategy as the
patient achieving pCR. To select the negative sample for this patient, we select
the sample that has the minimum distance between Fj .5 and post-treatment
features of all negative samples.

Dynamic Temporal Feature Difference Fusion Module (DTFDF-M).
As illustrated in Fig. 1(b), we propose the DTFDF-M to integrate tumor spatial
representations from longitudinal DCE-MRI. Given representations from two
consecutive time points, such as Frg and Fri, let their shapes be [C, H, W],
where C' denotes the number of channels, H represents the tensor height, and
W represents its width. To fuse these spatial representations, Frg and Fpp are
stacked together to form Fy € RZXCXHXW Quhsequently, F is fed into a tem-
poral convolutional block (TCB) with a residual structure. The TCB comprises
two dilated causal convolutional layers, normalization layers, non-linear activa-
tion functions, and dropout layers, ensuring effective feature fusion and tempo-
ral modeling. In this study, we stack four TCB layers to capture richer feature
representations. The output from the last TCB layer is fed into a transposed
convolution block to restore the feature dimensions, resulting in F,’. A 3x3 con-
volution operation is then employed to generate the offset M, from F,’. Both
M, and the tumor representation from the previous time point, e.g., Frpq, are
fed into a deformable convolution layer to extract tumor dynamic features Fjy
over the temporal interval. To effectively integrate the temporal differences in tu-
mor representations with current spatial features, e.g., Frq, a Spatio-Temporal
Feature Aggregation Module (STFAM) is developed for adaptive information
fusion, as illustrated in Fig. 1(c). The STFAM generates the enhanced feature
representation fr, as follows:

fFTl ZW(FTlaFd) ® Fr1, (2)

where w(-) denotes the operations to compute adaptive weights using a softmax
function, and ® denotes the element-wise multiplication. We integrate the tem-
poral difference features from each time interval into the subsequent time point
to predict pCR. To capture the temporal dependencies throughout the entire
treatment period, a multi-head self-attention mechanism is employed to fuse the
pre-treatment tumor representation and temporal difference features, resulting
in the temporal fusion representation, denoted as Fj,cg.
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Feature Decoupling-based Multi-Task Learning Module (FDMTL-M).
In clinical practice, the proportion of patients achieving pCR is generally low,
and the performance of pCR prediction varies across molecular subtypes, reflect-
ing their intrinsic biological heterogeneity. Relying solely on single-task learn-
ing methods for pCR prediction may be insufficient to achieve optimal results.
Therefore, we propose incorporating the prediction of biomarkers closely associ-
ated with pCR as auxiliary tasks within the multi-task learning (MTL) frame-
work. To achieve this, we introduce a feature decoupling-based MTL approach
(see Fig. 1(d)), which generates feature representations for different tasks by
accounting for both shared and task-specific information.

As shown in Fig. 1(e), we extend Conv-Former block [16] into a multi-task
feature decoupling module (FD-M). In this module, the temporal fusion rep-
resentation Fpcr contains shared information across different tasks, which is
utilized as the value matrix Vipere. The task-specific representation F; is de-
rived from task-related query-key feature representations, Q); and K;, where
t € {pCR, ER, HER2, MP}, which is calculated as:

f= Norm(Vshare + ConvAttention(Vihare, @t, Kt)), (3)
Fy = Norm (Vipare + FEN(f)). (4)

F; is then passed through its respective classification head to create a binary
classifier. For the pCR prediction task, we incorporate the features of auxiliary
tasks. Focal Loss (FL) Lpgocal is employed to address class imbalance issues. In
our experiments, Lpoca) is utilized to evaluate each specific task, with « and ~
set to [1,1] and 2, respectively. Additionally, we introduce a progressive learning
loss strategy for the loss function of the MTL framework. Initially, equal weights
are assigned to the primary and auxiliary task losses. As training progresses, the
weight of the primary task loss gradually increases, while those of the auxiliary
tasks decrease. This ensures that, towards the end of training, the primary task
plays a more dominant role. The overall loss L is calculated as follows:

L =wiLrr-rcr + (1 —w1)Lprr, (5)
E ocal,
LpLL = waLrocal,cr + (1 — w2) (EJFVf) ; (6)

where w; is fixed at 0.01, a; € {ER, HER2, MP}, and N is the number of
auxiliary tasks. During training, ws is initially set to 0.5, which progressively
increases such that 1 — ws decreases to 0.01 by the end of training.

3 Experiments and Results

3.1 Dataset and Experimental Settings

The dataset used in this study is obtained from the I-SPY 2 trial [10]. The I-
SPY 2 imaging cohort comprises 985 patients, of whom 199 were excluded due to
missing multi-time point MRI scans, poor image quality, or misaligned sequences.
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The remaining 786 patients, each undergoing four MRI scans before and during
NAC (see Fig. 1(f)), were randomly divided into training and testing sets at a
4:1 ratio. The training set was further divided into five folds for cross-validation.
The time points are defined as follows: pre-treatment (T0, pre-NAC); after 3
cycles (T1, early NAC); after 12 cycles and between drug regimens (T2, mid-
NAC); and post-treatment (T3, post-NAC, before surgery). To ensure consistent
spatial resolution, all MRI images are resampled to a voxel size of 1 x 1 x 1mm?3.
To reduce noise disturbance, the first and last five slices of each MRI scan are
discarded, and the remaining slices are resampled to 64 x 256 x 256 pixels. Our
DTFDF model was trained on four NVIDIA P100 GPUs with a batch size of
32 for 50 epochs, employing an early stopping strategy. The initial learning rate
was set to 0.002, with a weight decay of 0.05. AUC, accuracy (ACC), sensitivity
(SEN), and specificity (SPE) are used as evaluation metrics.

3.2 Comparisons with Existing Methods

We compare the proposed DTFDF model with three SOTA methods for longitu-
dinal medical image analysis: LSTM [12], Transformer [9], DiT [14], and LOMIA-
T [20]. All methods utilize MRI data from all time points of each patient, with
HiFuse employed as the feature extractor. Table 1 presents the comparative re-
sults. It is observed that DTFDF achieves the best performance in predicting
pCR, attaining the highest AUC value of 0.835, significantly outperforming DiT
(0.785), LOMIA-T (0.769), and Transformer (0.771). This superiority is mainly
attributed to the proposed dynamic temporal feature difference fusion strategy.
Unlike transformer-based methods (e.g., DiT & LOMIA-T), which treat feature
maps as tokens to compute self-attention for modeling temporal relationships,
our fusion strategy effectively captures longitudinal tumor changes, which are
critical for pCR prediction accuracy. In addition, the TR-TCL module constrains
the model to learn discriminative features between pre- and post-treatment, fur-
ther enhancing prediction performance. Notably, the LSTM method [12] does
not perform well, suggesting that the self-attention mechanism in Transformers
offers superior temporal modeling capabilities for pCR prediction.

Table 1. Comparison of our model with existing methods.

Methods AUC ACC SEN SPE
LSTM [12] 0.51440.018 0.509+0.013 0.559+0.118 0.45140.125
Transformer [9] 0~771i0A036 0.699i0A013 0-676i0022 0.710i0,020
DiT [14] 0785104016 0~746i0.026 0.618i0.024 0.824i0,054
LOMIA-T [20] | 0.76940.022 0.766+0.009 0.596+0.042 0.850+0.001
DTFDF (OHI‘S) 0.835;}:0_043 0.764;}:0,059 0.745:|:0.035 0~775i0.088
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3.3 Ablation Study

We conduct extensive ablation studies to investigate the contribution of different
time points and the effectiveness of our proposed components, as presented in
Table 2. All experiments are performed under identical training hyperparame-
ters. As shown in Table 2, using only pre-treatment images (T0) results in the
poorest predictive performance. Combining T0 with early-treatment images (T1)
does not lead to a significantly improvement in AUC value, which we attribute
to the minimal tumor changes observed between T0 and T1. In contrast, using
only post-treatment images (T3) results in a 2.3% improvement in AUC com-
pared to TO0, highlighting the higher predictive value of T3 images in the pCR
prediction task. Furthermore, combining T0 and T3 leads to a further 2.9% im-
provement in AUC, reinforcing this finding. Notably, replacing the DTFDF-M
with a Transformer-based fusion strategy, while keeping the other two proposed
components (TR-TCL and FDMTL-M), also enhances performance, with the
AUC increasing from 0.771 to 0.802. However, compared to our DTFDF, this
approach leads to a 3.3% drop in AUC, emphasizing the crucial role of the
DTFDF module in improving pCR prediction. Additionally, when compared
to models lacking TR-TCL and FDMTL-M, our DTFDF achieves AUC im-
provements of 1.8% and 1.5%, respectively, further validating the effectiveness
of the treatment-response-based triple contrastive loss and the multi-task learn-
ing strategy. Overall, models that exclude DTFDF-M or TR-TCL demonstrate
inferior predictive performance, highlighting the importance of these strategies
in enabling the model to learn treatment-related differential features crucial for
pCR prediction, thus enhancing its accuracy.

Table 2. Ablation studies on different strategies.

Methods M-1 M-2 M-3 AUC ACC SEN SPE
Only TO - - VvV [ 0.761410.005 0.71440.023 0.657+10.016 0.74210.039
Only T3 - - VvV [ 0.78410.056 0.735+0.055 0.649+0.033 0.778+0.008
T0+T1 vV - VvV | 076410033 0.678+10.026 0.71510.058 0.657+0.053
TO+T3 v - VvV |0.790410.038 0.70510.040 0.73110.058 0.69110.059
w/o DTFDF-M| - v v |0.802+0.014 0.75840.019 0.62640.040 0.8224¢.048
w/o TR-TCL | vv - v |0.81710.042 0.75410.058 0.71810.032 0.77410.007
w/o FDMTL-M| v v - | 0.820+0.030 0.738+0.040 0.71840.057 0.749+0.060
Our DTFDF v v v 0.835:{:0,043 0.764:}:0,059 0.745:|:0,035 0-775i0.088

! M-1 for DTFDF-M, M-2 for TR-TCL, M-3 for FDMTL-M

4 Conclusion

In this study, we propose a novel longitudinal medical image analysis framework
to predict the therapy response of breast cancer patients to NAC. Building on
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multi-stage tumor spatial feature fusion, we design a Dynamic Temporal Feature
Difference Fusion (DTFDF) strategy, which demonstrated superior performance
compared to existing fusion approaches based on LSTM and Transformer models.
Additionally, to capture subtle temporal changes in tumor characteristics across
patient MRIs, we introduce a treatment response-based triplet contrastive loss
function to enhance feature learning and improve predictive accuracy. Evalua-
tions on the publicly available I-SPY 2 trial dataset demonstrate the superiority
of our method. An ablation study further validates the effectiveness of the in-
cluded modules. However, the current evaluation relies on data from all four time
points. In the future, we will explore how to incorporate the dynamic changes
of the tumor into pre-treatment MRI features.
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