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Abstract. Efficiently and accurately removing noise from medical im-
ages is crucial for clinical diagnosis. Nevertheless, most deep learning-
based medical images denoising methods are highly complex and inac-
curate in preserving the edge and shape of different organs, resulting in
suboptimal denoising performance. In our study, we propose a Human
Visual System Inspired Lightweight Dual-Path Network for medical im-
ages denoising (VisNet), which can efficiently and accurately remove
noise from different types of medical images. Specifically, to simulate the
mechanism in the visual system where magnocellular and parvocellular
pathways capture significant and subtle noise, respectively, we design a
dual-path multi-scale perception module. Then, to simulate the function
of the primary visual cortex, we propose an edge detection and shape
adaptation module to preserve the structural information of the medi-
cal images. Finally, inspired by dorsal and ventral pathways, a spatial-
semantic information extraction module is designed to enhance the main
semantic information in the image through the interactive fusion be-
tween the spatial and semantic pathways. Experimental results demon-
strate that VisNet achieves superior performance across three medical
datasets compared to nine existing baselines, while maintaining minimal
computational complexity (Params=0.15, FLOPs=16.41). In addition,
for brain tumor classification, using denoised images of VisNet as input
significantly improves accuracy (87.5% vs 96.7%) and achieves perfor-
mance comparable to noise-free images. Code of VisNet is available at
https://github.com/yuehailin/VisNet.
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1 Introduction

Nowadays, medical images have become an indispensable means in clinical dis-
ease diagnosis. Common medical images include Computed Tomography (CT) [4],
X-ray Radiation (X-ray) [1], and Magnetic Resonance Imaging (MRI) [20]. These
medical images can provide a visual display of a patient’s internal structures, aid-
ing doctors in making more accurate diagnoses and treatment decisions [31,2].
However, various factors may introduce noise, including artifacts, spots, and
peaks. Such noise can compromise image clarity and quality, potentially leading
to incorrect diagnoses or treatment decisions, which in turn may pose unneces-
sary risks and harm to patients [16]. Therefore, it is necessary to design a method
that can efficiently remove noise and improve the quality of medical images.

Existing medical images denoising methods can be broadly classified into
filtering-based and deep learning-based methods. Filtering methods, such as me-
dian, average, and Gaussian filters [5,23,17], effectively reduce noise but often
lead to the blurring of image details and structure edges, resulting in distortion.
With the advancement of deep learning, convolutional neural networks (CNNs)
have been applied to image denoising, yielding significant results [14,11]. Subse-
quently, generative adversarial networks (GANs) have also emerged as a powerful
tool in this domain [29,9,21]. As attention mechanisms have progressed, trans-
former models have become an important tool for image denoising [19,13,30,27].
More recently, with the rise of selective state space, Mamba-based image de-
noising techniques have made notable progress [12]. However, most methods are
typically tailored to specific types of medical images, limiting their adaptability
to organs with varying shapes, and leading to suboptimal performance. The hu-
man visual system shows powerful visual perception capabilities [22] ( as shown
in Fig. 1 (A)), and simulating its process of processing visual signals may be able
to more effectively filter noise [28]. Moreover, these methods are usually complex
and require significant computing resources, making it challenging to achieve a
double breakthrough in denoising efficiency and denoising performance (Fig. 1
(B)). Thus, there is a growing need for lightweight, adaptable methods that can
efficiently denoise diverse types of medical images.

Based on these considerations, we propose a Human Visual System Inspired
Lightweight Dual-path Network (VisNet) for medical images denoising. As
we can see from Fig. 1 (A), to simulate the functions of the magnocellular and
parvocellular pathways in the human visual system, we design a dual-path multi-
scale perception module that effectively captures multi-scale noise in different
types of medical images and suppresses this noise through two distinct scale
pathways. Then, inspired by visual signal processing in the primary visual cortex
(V1), we propose an edge detection and shape adaptation module that uses
dense blocks and deformable convolutions to extract the edges and shapes of
organs in different types of medical images. Finally, we design a spatial-semantic
information extraction module to simulate the processes of the dorsal and ventral
pathways in processing spatial and semantic information, respectively.

The contributions of this work can be summarized as follows: 1) We take the
human visual system as the prototype and propose a lightweight medical images
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Fig. 1. (A): The visual pathway of the human visual system. (B): Comparison of the
SSIM and Parameters for different denoising methods.

denoising method, which achieves superior denoising performance across multi-
ple datasets, while maintaining minimal computational complexity. 2) Inspired
by the visual system’s magnocellular and parvocellular pathways, primary visual
cortex, and dorsal and ventral pathways, we design a dual-path multi-scale per-
ception module, an edge detection and shape adaptation module, and a spatial
semantic information extraction module, respectively. 3) Using denoised images
as input, the performance in common brain tumor classification is significantly
higher than that with noisy images, and closely the performance with noise-free
images, demonstrates its potential in clinical diagnosis.

2 Methods

2.1 Architecture Overview

In our study, we design a lightweight network inspired by a visual system for
medical images denoising. As shown in Fig. 2, the dual-path multi-scale per-
ception module can better perceive organs of various sizes in multiple types of
medical images through large and small pathways, enabling more accurate mod-
eling of noise at different scales. The edge detection and shape adaptation module
enhances the model’s ability to preserve the edge features of organs by empha-
sizing image edge structures and incorporating deformable convolution, which
facilitates better adaptation to the diverse shapes of organs, thereby improv-
ing the model’s capacity to effectively process complex organ structures. The
spatial-semantic information extraction module includes spatial and semantic
pathways that capture respective spatial and semantic information. The interac-
tions between these two pathways enrich features across different depths, thereby
enhancing the model’s understanding of spatial-semantic information.

2.2 Dual-path Multi-scale Perception Module

In the human early visual pathways, the magnocellular pathway (orange line in
Fig. 1 (A)) captures large-scale information with larger cell bodies and receptive
fields, while the parvocellular pathway (blue line in Fig. 1 (A)) focuses on image
details with smaller cell bodies and receptive fields. Inspired by these pathways,
we propose a dual-path multi-scale perception module to capture both significant
and subtle visual signals at different scales.
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Fig. 2. Overview of Human Visual System Inspired Lightweight Dual-Path Network.

As shown in Fig. 2 (A), the dual-path multi-scale perception module (DMP)
is consistent with the early visual pathways and also contains two pathways. The
large-scale pathway consists of four 3×3 convolutions to obtain a large receptive
field. By replacing a large convolution with multiple smaller ones, this approach
not only reduces the number of parameters but also enhances the model’s abil-
ity to fit non-linearities [24], thereby improving its capacity to capture global
image features. In contrast, the small-scale pathway adopts an alternating con-
catenation strategy, combining two 1×1 convolutions and two 3×3 convolutions.
Among them, the role of 1×1 convolution is used to control the number of chan-
nels, thereby reducing computational complexity while retaining information,
while 3×3 convolution can effectively capture smaller-scale detailed information
in the image. Through the parallel processing of large and small-scale pathways,
the module effectively removes multi-scale noise in a targeted manner.

2.3 Edge Detection and Shape Adaptation Module

As shown in Fig. 1 (A), the magnocellular and parvocellular pathways in the
human visual system transmit visual signals of varying scales to V1 for process-
ing, including the extraction of features such as edges and shapes. Inspired by
this, we propose an edge detection and shape adaptation module, following the
dual-path multi-scale perception module (as shown in Fig. 2 (B)), to extract
edge and shape features from visual signals at multiple scales.
Edge Detection Block. The edge detection (ED) module consists of three
convolutional layers and a dense block. Among them, the role of the convolu-
tional layer is to adjust the spatial dimension. The role of the dense block is to
capture image features. To maintain a balance between complexity and feature
extraction capability, we use 3 layers of convolutions within the dense block for
dense connections, followed by a 1×1 convolution. We obtain edge information
through a subtraction operation. The p-th layer in the dense block receives the
feature maps from all previous layers as input and produces the output Xp as
follows:



A Visual System Inspired Lightweight Denoising Network 5

Xp = Hp([X0, X1, ..., Xp−1]), (1)
where [X0, X1, ..., Xp−1] represents the concatenation of the feature maps gen-
erated in the 0, 1, ..., p − 1 layer. At the same time, Hp represents the current
convolutional layer, and Xp represents the output of p-th layer.
Shape Adaptation Block. In medical images, noise can present irregular fea-
tures on organs of different shapes. Traditional convolutions with fixed-size ker-
nels may not be able to effectively adapt to the changes in the shape of different
types of medical images [3]. Therefore, this section adopts the shape adapta-
tion (SA) block, which consists of deformable convolution. Specifically, the shape
adaptation block consists of three layers of deformable convolutions, with feature
map channels of 16, 32, and 3, respectively. Each deformable convolution layer
adaptively adjusts the kernel’s shape and position based on local input features,
enabling better adaptation to organs of different shapes. Stacking multiple layers
allows the model to progressively learn more abstract feature representations,
enhancing the performance in image denoising task. The formula of deformable
convolution can be expressed as follows:

Y (p) =

H×K∑
i=1

W (i) ·X(p+∆(p, i)) + b, (2)

where p represents the position in the output feature map, H×K is the size of the
convolution kernel, W (i) is the weight of the convolution kernel, X(p+∆(p, i))+b
represents the value of the input feature map at position p + ∆(p, i), Y is the
output feature map, b is the bias.

2.4 Spatial-Semantic Extraction Module

In the human visual system, the V1 module transmits visual signals to the dorsal
pathway and ventral pathway (as shown in Fig. 1 (A)), where they process spatial
information (such as location, motion, and depth) and semantic information
(such as object recognition and categorization), respectively. Inspired by this,
we propose a spatial-semantic extraction module.

As shown in Fig. 2 (C), the Spatial-Semantic Extraction (SSE) module con-
sists of two pathways. The spatial pathway contains three spatial attention
blocks. Each spatial attention block first processes the input through global
average pooling (GAP) and global max pooling (GMP) to obtain a feature map.
The feature map is then pass through a 3×3 convolution operation followed by
InstanceNorm, adding residual pixels to the input feature map. The semantic
pathway comprises three multi-channel stacked convolutions. As the model deep-
ens, the number of channels in three stacked convolutions increases to 3, 16, and
32, respectively. Additionally, there are three channel interactions between the
spatial and semantic pathways to facilitate feature complementarity. The data
flow in the second spatial attention block and the third stacked convolution in
Fig. 2 (C) is summarized as follows:

Xd2 = SpatialAttention ([Xd1, Xv1]) (3)
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Xv3 = Ck=3
(
Ck=3

(
Ck=1 ([Xv2, Xd2])

))
(4)

where Xd1 and Xd2 are the outputs of the first and second spatial attention
blocks. Xv1, Xv2 and Xv3 are the outputs of three stacked convolutions respec-
tively. Ck=n is the convolution with kernel size of n.

3 Experiments

3.1 Experimental Settings

Datasets. We evaluate VisNet on three types of public medical datasets. CT:
The 2016 NIH-AAPM-Mayo Clinic Low Dose CT Grand Challenge includes 2378
CT images [27]. We use 1709 images for training and 669 images for testing.
X-ray: The Japanese Society of Radiological Technology (JSRT) contains 247
chest X-ray images [18]. We use 197 images for training and 50 images for testing.
MRI: We use a public Kaggle dataset of brain tumor MRI images [26], adding
Gaussian and Poisson noise with levels of 15 and 50 (σ = 15 and σ = 50). The
training set contains 5712 images, and the test set contains 1311 images.
Implementation Details. We use mean square error (MSE) as the optimiza-
tion objective with Adam as the optimizer and a learning rate of 0.001. The
results of all comparative experiments are reproduced based on the original set-
tings and presented in terms of mean and standard deviation.
Evaluation Metric. In our study, we use Peak Signal-to-Noise Ratio (PSNR)
and Structural Similarity (SSIM) to evaluate the performance of different meth-
ods. PSNR is a widely used metric for evaluating image quality, particularly in
assessing the performance of image denoising. SSIM is used to evaluate the simi-
larity between a denoised image and its corresponding ground truth. SSIM takes
into account factors such as luminance, contrast, and structural information.

3.2 Compared with State-of-the-Art Methods

Results on CT and X-ray Denoising. Table 1 shows the quantitative de-
noising results for various methods on the CT and X-ray datasets. VisNet out-
performs all other methods in both CT and X-ray denoising tasks, achieving the
highest PSNR and SSIM values, demonstrating its superior denoising capabilities
across these modalities.
Results on MRI Denoising. Table 2 displays the results for the MRI denoising
task at different noise levels (σ = 15 and σ = 50). VisNet again shows the best
performance in terms of both PSNR and SSIM, surpassing other methods at
both noise levels. These results validate the superiority of VisNet in addressing
MRI denoising with varying levels of noise.
Visualization. In this section, we use X-ray as an example to visualize the
denoising performance of different methods. As shown in Fig. 3, compared to
other methods, the denoised image produced by VisNet is visually closest to the
ground truth, which visually highlights the superiority of VisNet.
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Computational Complexity. Despite achieving superior denoising perfor-
mance across CT, X-ray, and MRI datasets, VisNet also exhibits the lowest
computational complexity against all compared methods. Specifically, as shown
in Tables 1 and 2, the parameters (Params) of VisNet is 0.15 and the floating
point operations (FLOPs) of VisNet are 16.41, both of which are the lowest
among all the methods, making it an efficient and practical method for medical
images denoising tasks.

3.3 Ablation Study

To evaluate each component’s effectiveness (DMP, ED, SA and SSE), we se-
quentially remove one while keeping the others unchanged. As can be seen from
Table 3, removing any component (DMP, ED, SA, or SSE) from the model leads
to a decrease in the performance of the model. Specifically, omitting the DMP
module reduces the model’s ability to capture both subset and global features at
multiple scales, while removing the ED block degrades edge preservation, cru-
cial for object delineation. Excluding the SA block weakens shape adaptability,

Table 1. Quantitative results of all methods in CT and X-ray denoising task.

Methods CT X-ray Params FLOPs
PSNR SSIM PSNR SSIM

Noisy 27.563 2.038 0.812 0.071 9.001 0.955 0.354 0.085 - -
WGAN-VGG [29] 30.851 1.787 0.848 0.018 17.517 1.205 0.717 0.023 20.49 1082.77
CBDNet [10] 28.765 2.391 0.815 0.043 27.379 1.030 0.832 0.023 4.36 40.28
QAE [7] 31.364 1.243 0.859 0.041 26.424 1.201 0.806 0.038 0.38 153.22
DML [15] 31.535 1.612 0.863 0.020 26.305 1.571 0.768 0.043 0.56 62.12
CNCL [8] 31.679 1.574 0.866 0.047 26.334 0.943 0.802 0.040 44.43 277.77
MWDCNN [25] 31.056 1.722 0.845 0.028 29.412 1.205 0.864 0.051 8.18 834.06
MINF-MCNN [6] 32.062 1.321 0.872 0.027 26.822 0.677 0.793 0.052 4.40 576.86
ViMEDnet [12] 31.625 1.263 0.851 0.025 28.964 0.877 0.845 0.049 3.68 34.26
LoMAE [27] 31.835 1.364 0.870 0.025 26.833 0.593 0.867 0.025 6.87 107.52
VisNet (ours) 32.231 1.395 0.880 0.027 31.338 0.619 0.888 0.014 0.15 16.41

Noisy

GroundTruth

WGAN-VGG CNCL

VisNet (ours)

CBDNet DML

MWDCNN

QAE

MINF-MCNN LoMAEViMEDnet

PSNR = 7.691 SSIM = 0.293

PSNR =∞ SSIM = 1.000PSNR = 27.800 SSIM = 0.921PSNR = 26.612 SSIM = 0.823 PSNR = 26.709 SSIM = 0.866PSNR = 26.291 SSIM = 0.820PSNR = 24.600 SSIM = 0.860

PSNR = 24.354 SSIM = 0.834PSNR = 11.634 SSIM = 0.314 PSNR = 24.840 SSIM = 0.842 PSNR = 26.449 SSIM = 0.772 PSNR = 14.444 SSIM = 0.754

Fig. 3. Visualization results of all methods in X-ray image denoising task.
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Table 2. Quantitative results of all methods in MRI denoising task.

Methods MRI (σ = 15) MRI (σ = 50) Params FLOPs
PSNR SSIM PSNR SSIM

Noisy 12.738 2.110 0.291 0.085 8.724 0.602 0.050 0.021 - -
WGAN-VGG [29] 27.494 1.896 0.766 0.151 25.961 1.307 0.739 0.145 20.49 1082.77
CBDNet [10] 33.917 3.385 0.846 0.057 28.332 3.788 0.746 0.074 4.36 40.28
QAE [7] 31.453 1.765 0.835 0.047 27.332 1.458 0.715 0.054 0.38 153.22
DML [15] 30.813 1.816 0.801 0.045 26.907 1.321 0.723 0.071 0.56 63.12
CNCL [8] 28.910 0.533 0.628 0.154 27.268 0.623 0.445 0.158 44.43 277.77
MWDCNN [25] 33.524 1.736 0.854 0.066 28.227 1.403 0.736 0.062 8.18 834.06
MINF-MCNN [6] 34.518 3.419 0.889 0.031 28.254 3.613 0.741 0.073 4.40 576.86
ViMEDnet [12] 34.224 2.817 0.872 0.046 28.319 2.375 0.737 0.058 3.68 34.26
LoMAE [27] 34.337 3.601 0.891 0.029 28.216 3.578 0.736 0.069 6.87 107.52
VisNet (ours) 35.024 3.359 0.924 0.020 28.907 4.021 0.753 0.071 0.15 16.41

Table 3. Ablation experimental results of key modules on three datasets.

Methods CT X-ray MRI (σ = 15)

PSNR SSIM PSNR SSIM PSNR SSIM

w/o DMP 26.736 1.318 0.824 0.036 29.848 0.562 0.864 0.013 33.732 3.775 0.901 0.017

w/o ED 32.013 1.665 0.874 0.028 26.419 1.253 0.807 0.013 34.450 3.817 0.917 0.019

w/o SA 32.028 1.747 0.875 0.029 30.490 0.505 0.868 0.014 34.506 3.662 0.912 0.018

w/o SSE 31.945 1.707 0.873 0.029 30.880 0.570 0.879 0.015 30.837 3.447 0.815 0.046

VisNet 32.231 1.395 0.880 0.027 31.338 0.619 0.888 0.014 35.024 3.359 0.924 0.020

impairing generalization. Lastly, removing the SSE module hampers the model’s
ability to capture semantic relationships, adversely affecting contextual under-
standing. These results highlight the importance of each module, emphasizing
their contribution to VisNet’s performance.

In addition, we also analyze the impact of different learning rates and differ-
ent normalization methods in the spatial-semantic extraction module on model
performance. The experimental results show that a learning rate of 0.001 yields
the best model performance. Additionally, InstanceNorm proves to be more suit-
able for this study.

3.4 Clinical Application of VisNet

To further validate the clinical application value of the denoised images produced
by VisNet, we conduct brain tumor classification experiments using Res-BRNet
[32] as the baseline. When noisy MRI images are used as input, the accuracy of
Res-BRNet is 87.5%. However, when MRI images denoised by VisNet are used
as input, the accuracy of Res-BRNet improved to 96.7%, which is close to the
97.5% accuracy achieved with noise-free images as input. These results highlight
the clinical value of VisNet in clinical diagnosis.
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4 Conclusion

We propose a lightweight dual-path network inspired by the human visual system
for medical images denoising. Overall, VisNet presents an accurate and efficient
method for medical images denoising. In future work, we will further investi-
gate the interpretability of different modules in VisNet. Additionally, we aim to
explore the clinical application value of VisNet across various types of medical
images, to assess its effectiveness in real-world medical scenarios.
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