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Abstract. Medical image restoration (MedIR) demands precise mod-
eling of anisotropic spatial dependencies, where directional anatomical
patterns are frequently degraded by conventional methods. We propose
Directional Adaptive Shuffle Mamba (DASMamba), a state-space model
architecture that addresses this challenge through two novel components:
(1) the Directional Adaptive Shuffle Module (DASM), which captures
long-range dependencies via directional adaptive random shuffle and se-
lective scanning, and (2) the Dual-path Feedforward Network (DPFN),
enhancing feature representation through multi-scale learning and dy-
namic channel fusion. By integrating these modules into a hierarchical U-
shaped architecture, DASMamba achieves state-of-the-art performance
on MRI super-resolution, CT denoising, and PET synthesis tasks while
maintaining linear computational complexity. Our framework’s ability to
preserve diagnostically critical structural details underscores its clinical
value. The code is available at https://github.com/cc111mp/DASMamba-
MedIR.

Keywords: Medical Image Restoration · State-Space Models · Anisotropic
Processing.

1 Introduction

Modern clinical diagnostics rely on high-quality medical imaging, yet routine
acquisitions are often compromised by noise (CT), limited resolution (MRI), or
artifacts (PET). Medical image restoration (MedIR) enhances low-quality (LQ)
inputs into diagnostically useful high-quality (HQ) outputs, particularly critical
for MRI super-resolution [19,28], CT denoising [1,14,24], and PET synthesis [23].
A key challenge lies in medical images’ inherent anisotropy—directional inten-
sity variations from anatomical structures like vascular networks. Conventional
methods often oversmooth these patterns [4,20], risking loss of critical diagnostic
details. The challenge of anisotropy is not confined to 3D volumes. Even within
2D slices, crucial medical structures such as vascular networks, muscle fibers,
and organ boundaries exhibit strong, direction-specific patterns and textures.

https://github.com/cc111mp/DASMamba-MedIR
https://github.com/cc111mp/DASMamba-MedIR


2 S. C. K. Chan et al.

Treating these features isotropically can lead to blurring and the loss of fine
details, which are often vital for accurate diagnosis.

Current deep learning approaches have complementary limitations. While
CNNs [17] effectively model local textures, their limited receptive fields hinder
long-range dependency capture. Transformers [6] address this through global
attention but incur quadratic complexity, making them impractical for high-
resolution data. SSMs [7] offer linear complexity alternatives but struggle with
complex spatial relationships. Additionally, shuffle-based strategies [22] have
shown promise in homogenizing spatial distributions, which inspires our ap-
proach.

We propose DASMamba, an SSM-based framework combining: DASM pre-
serving anisotropic structures via adaptive shuffling while modeling global con-
texts through selective scanning, and DPFN enhancing feature learning via par-
allel multi-scale processing and dynamic channel interactions. Integrated in a
hierarchical U-shaped architecture, our framework achieves state-of-the-art per-
formance across MRI/CT/PET tasks with linear complexity, enabling clinical
practicality for high-resolution imaging. Our work explicitly addresses this by
employing row and column shuffling to present varied spatial arrangements to
a four-directional scanning mechanism, ensuring that the model can adapt to
dominant structural axes rather than averaging them away.

2 Method

2.1 Vision State-Space Module

State-Space Models (SSMs) are powerful computer vision frameworks for mod-
eling long-range dependencies. The 2D Selective Scan Module (2D-SSM) [12]
captures spatial relationships through multi-directional feature scanning using
discretized state-space equations along horizontal, vertical, and diagonal axes.
Summation-based fusion of directional outputs preserves 2D structural integrity,
demonstrating SSMs’ effectiveness in vision tasks through systematic integration
of cross-dimensional spatial information.

2.2 Network Architecture

The DASMamba network employs a hierarchical U-shaped architecture (Figure
1(a)) to process low-quality input ILQ. It generates shallow features FS through
an initial convolution. The encoder and decoder levels, with block depths of
[2, 2, 4, 4], utilize the DASM for anisotropic feature extraction. Three refinement
blocks produce the residual image IR, yielding the final output as ÎHQ = ILQ +
IR.

2.3 2D-Directional Adaptive Shuffle Scan Block

To effectively capture the anisotropic nature of medical images, we propose a
2D-Directional Adaptive Shuffle Scan Module(2D-ASM) within our Directional
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Adaptive Shuffle Block (DASB). This approach begins with spatially shuffling
the input tensor x ∈ RB×C×H×W while preserving channel-wise information
integrity. The shuffling operation can be formalized as:

x,H,W = shuffle(x), xrestore = reverse(x,H,W) (1)

where H and W store the shuffling indices for exact spatial restoration. Fol-
lowing the shuffle operation, our 2D-ASM employs a guided filtering mechanism
that adaptively enhances directional features through a series of operations:

favg = AP(Conv(x)), fmax = MP(Conv(x)) (2)

f = Conv([favg, fmax]), fg = reshape(f, [B,K,G]), prompt = fg · E (3)

where AP and MP denote adaptive average pooling and adaptive max pooling
respectively, K = 4 represents our directional scanning paths, G is the number
of feature groups, and E ∈ RG×dstate represents learnable embeddings for feature
enhancement. The concatenation of average and max pooling features enables
the module to capture both global statistics and salient local features.

The 2D-DAS then processes these enhanced features through multiple direc-
tional state-space operations:

Y = {yk | k ∈ [1, 4]}, yk = SSMk(x,prompt) (4)

The final output combines filtered and aggregated features through an adaptive
weighting mechanism:

Yfilter =

4∑
k=1

(yk · fg), Ysum =

4∑
k=1

yk, Yout = αYfilter + βYsum (5)

where α and β are learnable parameters that balance the contribution of fil-
tered and aggregated features. Through this adaptive mechanism, our DASB
achieves three key advantages: maintaining channel-wise information integrity
during spatial reorganization, capturing directional features through multiple
selective scanning paths, and adaptively enhancing features based on input char-
acteristics. This framework effectively processes anisotropic medical image fea-
tures, making it particularly suitable for medical image restoration tasks where
directional patterns and structural details are crucial.

2.4 Dual-path Feed-forward Network Module

We propose a DPFN module that incorporates dual-path processing with dy-
namic feature fusion. The module is designed to enhance feature representation
through multi-scale learning and efficient channel interactions. Given an input
X ∈ RC×H×W , the module operates through several carefully designed stages:
The initial transformation expands the feature space to allow for richer repre-
sentation learning:

Xexp = Win(X), X1, X2 = split(Xexp) (6)
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Fig. 1. Overview of the DASMamba architecture. (a) Directional Adaptive Shuffle
Module (DASM) showing the complete processing pipeline. (b) Directional Adaptive
Shuffle Block (DASB). (c) 2D-Directional Adaptive Shuffle Scan illustrating the state-
space formulation and shuffle mechanism (2D-ASM). (d) Dual-path Feed-forward Net-
work (DPFN) with depth-wise and group convolutions.

Win is a 1× 1 convolution that expands the channels by a factor of 2β, creating
a broader feature space for subsequent multi-scale processing. This bifurcation
facilitates parallel feature extraction paths, utilizing depthwise convolutions with
varying receptive fields.

Y1 = D3×3(X1), Y2 = D5×5(X2) (7)

where Dk×k denotes depthwise convolution. The 3×3 kernel captures local struc-
tural patterns, while the 5×5 kernel aggregates broader contextual information,
enabling complementary feature learning at different scales.

To enable cross-path information exchange and feature refinement, we intro-
duce an interleaved channel fusion mechanism followed by group convolutions
and adaptive modulation:

F1 = F(Y odd
1 , Y even

2 ), F2 = F(Y even
2 , Y odd

1 ) (8)

Fout = W1×1(F1) + GELU(W3×3(F2)) (9)

Y = Wout(Fout ⊙ GELU(Y1)) (10)

where F represents channel-wise concatenation, W1×1, W3×3 are group convolu-
tions (groups=C/β) for channel mixing and spatial modeling, and Wout performs
channel reduction with GELU-based feature recalibration.

3 Experimental and Results

3.1 Datasets

For experimental evaluation, we conduct studies on three medical imaging tasks:
MRI Super-Resolution: The experiments use T2-weighted MRI scans from
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Table 1. Quantitative comparison of different medical image restoration methods on
MRI, CT, and PET modalities. The best results are highlighted in bold and the
second-best results are underlined. Methods marked with * are re-implemented by us.

Method Params FLOPs MRI Super-Resolution CT Denoising PET Synthesis Average
(M) (G) PSNR ↑ SSIM ↑ RMSE ↓ PSNR ↑ SSIM ↑ RMSE ↓ PSNR ↑ SSIM ↑ RMSE ↓ PSNR ↑ SSIM ↑ RMSE ↓

SwinIR [11] 11.50 187.9 31.5549 0.9334 30.5788 / / / / / / / / /
Restormer [26] 26.12 35.20 31.8474 0.9378 29.2095 / / / / / / / / /
MambaIR [5] 31.50 34.34 31.7700 0.9369 29.8372 / / / / / / / / /
CTformer [21] 1.45 3.44 / / / 33.2500 0.9134 8.8974 / / / / / / /
DenoMamba [16] 112.6 110.2 / / / 33.5300 0.9149 8.6115 / / / / / / /
SpachTransformer [10] 19 / / / / / / / 37.1371 0.9456 0.0871 / / /
ARGAN [13] 31.14 8.48 / / / / / / 36.7300 0.9406 0.0902 / / /
AMIR [23] 23.54 31.77 31.9923 0.9393 29.2095 33.6738 0.9183 8.4773 37.2121 0.9473 0.0863 34.2927 0.9350 12.5910
Restore-RWKV [25] 27.91 37.45 32.0913 0.9408 28.9713 33.7988 0.9188 8.3600 37.3314 0.9474 0.0852 34.4072 0.9357 12.5722
NAFNet* [2] 67.89 15.80 31.9078 0.9376 29.5394 33.7848 0.9200 8.3742 37.2672 0.9453 0.0859 34.3199 0.9343 12.6668
CODEFormer* [29] 12.18 22.44 31.8879 0.9371 29.5584 33.8066 0.9203 8.3532 37.2846 0.9448 0.0856 34.3264 0.9341 12.6657
XFormer* [27] 25.21 35.72 31.9122 0.9373 29.4700 33.7610 0.9200 8.3947 37.2542 0.9450 0.0859 34.3091 0.9341 12.6502
Histoformer* [19] 26.24 36.30 31.9210 0.9378 29.4177 33.8115 0.9206 8.3480 37.3628 0.9472 0.0850 34.3651 0.9352 12.6169
VmambaIR* [18] 22.97 19.21 31.9277 0.9380 29.3439 33.7627 0.9203 8.3943 37.3673 0.9468 0.0847 34.3526 0.9350 12.6076
DASMamba-S 4.76 3.39 31.7919 0.9355 29.8132 33.7948 0.9202 8.3646 37.2895 0.9460 0.0857 34.2921 0.9339 12.7545
DASMamba 27.13 12.96 32.1546 0.9406 28.6585 33.8458 0.9210 8.3192 37.3726 0.9477 0.0845 34.4577 0.9364 12.3541

the IXI dataset [9]. We select the central 100 slices (256 × 256) from each 3D
volume to rich content can be shown in those 100 images. Low-resolution images
are simulated by downsampling the k-space data by a factor of 4×. We split the
dataset into 405, 59, and 114 cases for training, validation, and testing.
CT Denoising: Our evaluation uses the 2016 NIH AAPM-Mayo Clinic Low-
Dose CT Challenge dataset [15] with paired normal and quarter-dose scans at
512× 512 resolution. The dataset includes 10 patients, with 8 used for training,
1 for validation, and 1 for testing.
PET Synthesis: We evaluate a PET imaging dataset [8] comprising 159 scans
(192× 192× 400, voxel size: 3.15mm× 3.15mm× 1.87mm). The low-dose images
are obtained by reducing the original dose by a factor of 12. The dataset is
divided into 120/10/29 volumes for training, validation, and testing, excluding
air-only slices.

3.2 Loss Function

DASMamba optimizes both spatial and frequency domain dependencies through
a dual-domain loss function:

Ltotal =
1

Sr
∥IHQ − ILQ∥1 + λ · 1

Sr
∥F(IHQ)−F(ILQ)∥1, (11)

where IHQ and ILQ denote high-quality ground truth and low-quality inputs
respectively, Sr is the scale factor, F(·) represents the Fourier transform, and
λ balances the spatial and spectral components. The FFT loss guides the re-
covery of anisotropic patterns and ensures global frequency coherence through
learnable channel-wise frequency embeddings, preventing blurring artifacts while
maintaining critical spectral features.

3.3 Implementation

The proposed network uses a base channel dimension of 48 and a feedforward
expansion ratio of 2 for DPFN modules. It is trained on 128×128 image patches
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Fig. 2. Visualization of feature maps showing 2D-ASM effectiveness on a low-dose CT
image: original image, initial features, SS2D-generated maps, and 2D-ASM-enhanced
maps.

with a batch size of 4, using a cosine annealing learning rate schedule that decays
from 2 × 10−4 to 1 × 10−6. The model is trained for 300,000 iterations for CT
denoising, PET synthesis, and MRI reconstruction tasks. All experiments are
implemented in PyTorch and executed on an NVIDIA RTX 3090 GPU.

3.4 Comparative Experiments

DASMamba leverages directional adaptive shuffle scanning and a dual-path
feed-forward network to effectively recover fine anatomical details from low-
resolution MRI images. As shown in Table 1, our method achieves the high-
est PSNR (32.1546 dB) coupled with excellent RMSE performance, surpassing
methods such as Restore-RWKV that rely on recurrent attention. Figure 3 fur-
ther illustrates that DASMamba preserves contrast and subtle structural pat-
terns—particularly fine line details—by mitigating blurring artifacts and enhanc-
ing local content recovery.

MRI Super-Resolution Results. Our DASMamba achieves superior per-
formance in MRI super-resolution across major evaluation metrics, particularly
in PSNR and RMSE, while maintaining competitive SSIM scores. Figure 3
demonstrates that our method better preserves contrast and structural patterns
in brain MRI images, particularly in fine line details. While Restore-RWKV
shows strong results with its recurrent attention mechanism, our approach fur-
ther improves reconstruction quality through effective selective scanning.

CT Denoising Results. DASMamba attains state-of-the-art CT denois-
ing performance, obtaining a PSNR of 33.85 dB. The architecture’s selective
scanning mechanism, which effectively captures anisotropic spatial dependencies,
provides substantial improvements over conventional methods. In addition, our
lightweight variant DASMamba-S delivers competitive results (33.79 dB PSNR)
while dramatically reducing the parameter count (by 23.7×) and FLOPs (by
32.5×) compared to more complex approaches like DenoMamba. These results
underscore the benefit of our adaptive shuffle strategy in efficiently restoring
low-dose images while preserving critical anatomical structures.

PET Synthesis Results. Figure 3 presents the qualitative evaluation of
different restoration approaches. The experimental results demonstrate that tra-
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Table 2. Ablation experiments for the DASM module
components.

Component PSNR ↑ SSIM ↑ RMSE ↓

Baseline (W-MSA) 33.8064 0.9201 8.3549
+ SS2D 33.8124 0.9205 8.3474
+ 2D-ASM 33.8223 0.9205 8.3392

+ Shuffle + SS2D 33.8172 0.9204 8.3431
+ Shuffle + 2D-ASM 33.8317 0.9206 8.3305

+ Shuffle + DGFF 33.8317 0.9205 8.3308
+ Shuffle + MSFN 33.8324 0.9205 8.3284

2D-ASM + Shuffle + DPFN 33.8352 0.9208 8.3267

Table 3. Ablation studies
on the group size for 2D-
ASM.

Group PSNR ↑

2 33.8331
4 33.8335
8 33.8352
12 33.8304

ditional methods have limitations in distinguishing signal from noise, resulting in
detail degradation during the restoration process. Although existing approaches
achieve broad spatial coverage, they show reduced effectiveness in handling ori-
ented structural elements. DASMamba demonstrates superior capability in pre-
serving anatomical boundaries and textural details. Quantitative metrics con-
firm this performance advantage, even when compared to recent approaches like
VmambaIR and Restore-RWKV. DASMamba’s consistent effectiveness across all
metrics validates its strength in PET image processing.

Overall Performance. Across all three medical imaging tasks, DASMamba
not only achieves state-of-the-art quantitative performance but also offers sig-
nificant computational advantages. By combining state-space modeling with di-
rectional adaptive shuffling and dual-path fusion, our framework effectively re-
constructs directional patterns and clinically significant high-frequency details
with linear complexity. These advantages are reflected in the comprehensive
evaluation metrics of Table 1, where DASMamba outperforms established CNN,
Transformer, and SSM counterparts. Overall, our results demonstrate that the
proposed method delivers both enhanced restoration quality and computational
efficiency, underscoring its potential for practical clinical applications. The over-
all model complexity remains linear, as the 2D-ASM relies on a fixed-window
multi-head self-attention (MHSA), and both the SSM blocks and the DPFN
operate with linear complexity.

3.5 Ablation Studies

To evaluate the contributions of key components in DASMamba, we conduct
comprehensive ablation experiments on CT image denoising. In these studies,
we employ the window-based multi-head self-attention (W-MSA) block as a base-
line.

Effect of Selective Scanning and Shuffling. Table 2 shows that while
the baseline SS2D module successfully extracts features, incorporating the 2D-
Directional Adaptive Shuffle Scan module (2D-ASM) further improves the cap-
ture of local patterns. As illustrated in Figure 2, the 2D-ASM highlights degraded
regions and preserves anatomical details, with enhanced edge information and
structural patterns apparent in the progression of features. The most significant
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Fig. 3. Visual comparison of different methods: (a) CT image denoising, (b) PET image
synthesis, and (c) MRI image super-resolution.

gains are achieved when shuffling is combined with 2D-ASM; here, shuffling in-
troduces diverse spatial arrangements, while adaptive scanning efficiently detects
directional patterns in the rearranged feature maps.

Ablation on Feed-Forward Network Design. Table 2 also reveals limita-
tions in existing feed-forward network designs. The Mixed-scale FFN (MSFN) [3]
processes 3×3 and 5×5 features sequentially, which restricts cross-scale interac-
tion. In contrast, the Dual-scale Gated FFN (DGFF) [19] relies on pixel shuffling,
a process that can distort fine details. Our proposed Dual-path Feedforward Net-
work (DPFN) addresses these issues by processing multi-scale features in paral-
lel, dynamically recombining channels across scales and adaptively fusing them
via grouped and pointwise convolutions. The final feature calibration, enhanced
by GELU activation, refines the representation without compromising spatial
integrity, leading to superior performance compared to DGFF and MSFN.

Impact of Group Size in 2D-ASM. Experiments varying the group size
within the 2D-ASM design (see Table 3) demonstrate that a group size of 8
achieves optimal performance. This setting effectively captures multi-directional
features through the four complementary scanning paths and maintains com-
putational efficiency. In contrast, smaller group sizes limit directional coverage,
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while larger group sizes increase complexity without substantial gains in feature
representation.

4 Conclusion

In this paper, we present DASMamba, a novel state-space model framework that
combines adaptive spatial processing with a hierarchical U-shaped architecture
to achieve state-of-the-art medical image restoration across MRI, CT, and PET,
effectively preserving anisotropic structural details with linear computational
complexity.
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