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Abstract. Photoacoustic (PA) imaging is an emerging biomedical imag-
ing modality well-suited for visualizing blood vessels due to its non-
invasive, label-free nature. Registering vascular PA volumetric images
acquired at different times or viewpoints is crucial for tracking longitu-
dinal changes and expanding the field of view for comprehensive vascular
assessment. However, PA volumes exhibit characteristics such as spar-
sity, ambiguity, vascular network changes, and unavoidable body hair,
which pose significant challenges and limit the accuracy and robust-
ness of existing registration methods. We propose a robust affine reg-
istration framework to address PA registration challenges, integrating
feature-based alignment, intensity-based refinement, and hair removal.
We leverage 2D feature matching with reverse mapping based on maxi-
mum intensity projections (MIPs) to handle sparsity and ambiguity, en-
abling robust alignment. An intensity-based refinement further enhances
accuracy by incorporating our feature-guided sampling strategy to miti-
gate the impact of vascular network changes. Additionally, we introduce
a hair removal procedure to prevent hairs from affecting registration. Ex-
perimental evaluation, conducted in collaboration with medical experts,
demonstrates that our method outperforms existing approaches in both
accuracy and robustness on real PA volumes.
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1 Introduction

Photoacoustic imaging (PAI) is a hybrid imaging modality based on the photoa-
coustic effect [5]. As illustrated in Fig. 1(a), PAI uses laser pulses to irradiate
tissue, where chromophores such as hemoglobin absorb the light and generate ul-
trasonic waves through thermoelastic expansion. These waves are then detected
by ultrasound sensors and reconstructed into images. With its non-invasive,
label-free nature, and high spatial resolution, PAI provides an effective way for
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Fig. 1. (a) Principle of PAIL (b) Comparison of our method with baseline methods,
MUVINN (7] and Elastix [16]. (¢) Challenges in vascular PA volume registration. From
top to bottom: a slice view of a PA volume (sparsity), hair artifacts, two visually
similar vessels indicated by while arrows (ambiguity), and a missing vessel in one
volume (vascular network changes). (d) Zoomed-in registration results.

visualizing vascular structures, which often serve as clues for disease detection.
Unlike magnetic resonance imaging (MRI), PAI does not require contrast agents
or extra preparation [2].

In vascular PAI, aligning volumes acquired at different times or from differ-
ent viewpoints is essential for tracking longitudinal changes and expanding the
field of view for a more comprehensive vascular assessment. However, the char-
acteristics of vascular PA volumes present four key challenges for registration,
as illustrated in Fig. 1(c): (1) Sparsity: unlike dense anatomical structures in
MRI or computed tomography (CT) images (e.g., brain), blood vessels in PA
volumes are sparse, occupying a small fraction of the volume. Efficiently han-
dling this sparsity is crucial for robust and accurate registration. (2) Ambiguity:
vessels with similar width and orientation are difficult to distinguish, introduc-
ing ambiguity in correspondence establishment. (3) Vascular network changes:
factors such as acquisition settings, treatment effects, or disease progression can
cause the same vessels to differ in width and intensity. Some vessels may even be
missing in certain PA volumes. (4) Hair artifacts: hair produces strong signals
in PA imaging and short hairs may persist even after shaving. Its deformations
often differ from those of vessels, causing vessel misalignment even when hairs
are correctly registered. This effect is evident in the registration results with and
without hair removal using our method in Fig. 1(d).

Some studies on vascular PA volume registration focus on aligning batches
of PA volumes from multi-scan acquisitions to enhance image quality [6,1,13],
which differs from the goal of pairwise registration for volumes acquired at differ-
ent times or viewpoints. Prior pairwise vascular PA volume registration studies
[30,7] have applied intensity-based registration, a widely used approach in medi-
cal image registration [16,28,27,21,20,3,1,12], which aligns images by comparing
voxel intensity distributions using similarity measures such as mutual informa-
tion (MI). Yu et al. [30] compare various registration schemes and emphasize the
importance of initialization for intensity-based methods. De Santi et al. [7] em-
ploy implicit neural representations (INRs) to model the displacement field and
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address sparsity using a multi-resolution strategy with importance sampling.
While intensity-based methods achieve high accuracy, they are prone to local
minima and heavily depend on initialization when handling large misalignments.
This is due to their reliance on non-smooth similarity metrics with numerous lo-
cal extrema [23]. The sparsity, ambiguity, vascular network changes, and hair
artifacts in vascular PA volumes further exacerbate this issue.

Feature-based methods estimate transformations by extracting and match-
ing features [19,18,4,25], demonstrating robustness to large misalignments when
sufficient keypoints are matched. Yu et al. [29] propose an unsupervised learning
model for obtaining matched keypoints in brain MRI volumes, utilizing a closed-
form solution for affine registration, demonstrating strong robustness. However,
its application to PA volumes is hindered by limited training data. Rister et
al. [24] extend SIFT [18] for volumetric image registration but show limited ro-
bustness in vascular PA volumes, likely due to the absence of distinct corner- or
blob-like features. While recent learning-based feature matching methods per-
form well across various image domains, they are predominantly designed for 2D
images. Moreover, applying 2D feature matching on slices is impractical due to
sparse signals and indistinguishable appearance of vessels in slice views.

In this paper, we propose a robust affine registration framework for vascular
PA volumes that integrates feature-based alignment for robustness, intensity-
based refinement for accuracy, and hair removal to mitigate the impact of hair
artifacts on registration. Our key contribution is a novel feature-based registra-
tion pipeline that leverages 2D feature matching with reverse mapping to handle
sparsity and ambiguity by shifting the registration problem from whole-volume
processing to a set of keypoints, enabling robust registration against large mis-
alignments. Specifically, we extract and match keypoints from the maximum
intensity projections (MIPs) of PA volumes along the depth axis using recent
advances in learnable local feature matching, then reverse-map the keypoints
to 3D positions to estimate the transformation. To achieve higher accuracy, we
refine the transformation using an intensity-based approach with our proposed
feature-guided sampling strategy, ensuring optimization focuses on consistent
vascular structures and effectively handling vascular network changes. Addition-
ally, we propose a clustering-based hair removal procedure that utilizes prior
knowledge of hair characteristics to minimize their impact on vessel alignment.

In summary, the main contributions of this work are as follows:

1. Novel feature-based registration pipeline that integrates 2D feature matching
with reverse mapping to effectively address sparsity and ambiguity.

2. Feature-guided sampling strategy that enhances robustness against vascular
network changes for intensity-based refinement.

3. Hair removal procedure as a preprocessing step to mitigate hair artifacts.

2 Method

Let V¢ and V;, be the fixed (target) and moving (source) volumes. We aim to
find the optimal affine transformation matrix A* € R*** so that the transformed
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Fig. 2. Diagram of the proposed hair removal procedure. All operations are applied to
volumes; MIPs are shown for illustration purposes.

volume V;,, 0 A* aligns with Vy. We assume both V; and V,,, are grayscale vascular
PA volumes. Our framework first removes hairs if present. We then extract and
match 2D keypoints from the MIPs of the PA volumes, reverse-map them to 3D
positions, and estimate an initial affine transformation. Finally, intensity-based
refinement with feature-guided sampling further improves alignment.

2.1 Hair Removal

To focus registration on vessels rather than hairs, we introduce a hair removal
procedure. A previous study [15] employed a semi-supervised approach for hair
removal in PA volumes but demonstrated limited generalizability. To eliminate
the need for additional labeling, we propose a clustering-based method that
leverages prior knowledge of hair characteristics.

The hair removal procedure, illustrated in Fig. 2, begins with the Frangi filter
[11] to enhance tubular structures and suppress background noise. Thresholding
is then applied for initial segmentation, followed by retaining only regions within
a predefined size range, as hair regions are generally shorter than vessel regions.
The retained regions consist primarily of hair, along with some vessels. To further
differentiate hair regions from vessels, we apply DBSCAN clustering [9], lever-
aging the observation that adjacent body hairs often share similar orientations
and distinct intensity distributions compared to vessels [15]. Clustering features
include region orientation and intensity histogram. The largest k clusters (k = 3
in this work) are identified as hair regions and removed by zeroing or inpainting
the corresponding voxels. While not perfectly accurate, the removal effectively
prevents hair artifacts from interfering with registration.

2.2 Feature-based Alignment with Reverse-Mapping

To exploit recent advances in 2D learning-based feature matching for PA vol-
ume registration, we introduce a reverse mapping approach inspired by critical
point detection in tree-like structures [26,17,31]. Handcrafted feature models like
SIFT exhibit limited effectiveness on vascular PA volumes [30]. While learning-
based methods outperform them, most are designed exclusively for 2D images.
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Fig. 3. Diagram of the proposed feature-based alignment with reverse mapping.

However, due to the sparsity of PA volumes, vascular structures are often well-
separated in their MIPs. This enables effective 3D transformation estimation
using reverse-mapped keypoints in 3D from 2D feature matching on MIPs.

Reverse mapping relies on the observation that a 2D vessel point in the x-
y MIP corresponds to the 3D voxel with the same (z,y) coordinates and the
maximum intensity along the depth axis. As illustrated in Fig. 3, to determine
the corresponding depth d of a keypoint (2/,y") on the MIP, we perform reverse
mapping as d = argmax, F(V,0)(z,y, z), where F is the Frangi filter, which
suppresses background noise to improve reverse mapping accuracy, and o (set
to 4 in this work) controls the scale of vessels enhanced. Building on this, we
extract and match keypoints from the x-y MIPs of V; and V,,, then reverse-
map them back to 3D space. For this, we select OmniGlue [14] due to its strong
generalizability to PA volume MIPs, despite not being explicitly trained on them.
We use the publicly released model weights without any additional fine-tuning.

Given N matched keypoints (p;, qi)ilil, where p;,q; € R3 are keypoints de-
tected in V,, and V¥, respectively, the optimal affine transformation A* is com-
puted by solving A* = argminy4 Zf;l llgi — Api||?, where p; = [p};1]" € R*
represents the homogeneous coordinates of p;. This optimization problem is effi-
ciently and robustly solved using the total least squares method with RANSAC
[10].

2.3 Intensity-based Refinement with Feature-guided Sampling

Given the good initialization provided by the preceding feature-based alignment,
we apply intensity-based registration with our proposed feature-guided sampling
strategy to further improves registration accuracy.

To achieve this, we adopt a typical iterative optimization framework [16].
However, similarity measures become less reliable in regions with vascular net-
work changes, increasing the risk of suboptimal registration. To overcome this,
we use keypoints from feature-based alignment to guide sampling, ensuring op-
timization focuses on regions with consistent vascular structures. Specifically, all
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Fig. 4. Top: Registration results of our method with TRE scores (mm) in the upper
left corner. Fixed landmarks: crosses, moving landmarks: circles. Bottom: Comparison
of baseline methods and our approach. All results are shown as x-y MIPs, with hairs
added back to the registration results of hairy data in our approach for fair comparison

inlier keypoints identified by RANSAC in V} serve as centers for n xn xn patches
(n =5 in this work), from which 20% of voxels are randomly sampled per iter-
ation to compute the similarity measure. To emphasize vascular structures and
suppress background noise, we perform optimization on the Frangi filter output
(o = 2) instead of the original PA volumes. MI is used as the similarity measure
for its robustness to intensity variations. The optimization problem is formu-
lated as A* = argminyg MI(F(Vy,0), F(V,,,0) o A), where o denotes applying
the transformation to a volume.

3 Experiments

We evaluated the proposed framework on 20 pairs of vascular PA volumes, in-
cluding 10 without hairs (normal dataset) and 10 with hairs (hairy dataset),
acquired from the leg and arm at different time points using a PA imaging sys-
tem [22] with 797 nm incident light. Regions of interest were manually cropped,
yielding volumes ranging from 800 x 800 x 300 to 1200 x 1200 x 300 with a voxel
size of [0.1,0.1,0.1] mm. Code available: https://codeberg.org/ljd/pa-reg.

For quantitative evaluation, we manually annotated matched landmarks for
each volume pair under the guidance of a medical expert to compute the Target
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Table 1. Quantitative comparisons with baselines. Standard deviations are in paren-
theses. All results represent average scores across the dataset. Before-reg refers to before
registration. 1 () indicates that higher (lower) values are better.

Method Normal Hairy Time (s)
TRE (mm) | Dicet TRE (mm) ]  Dicet

Before-reg 27.82 (9.74) 0.02 (0.02) 15.08 (7.20) 0.06 (0.07) -

Ours 1.30 (0.72) 0.46 (0.19) 1.34 (0.31) 0.44 (0.18) 11.27
Elastix 21.02 (14.06) 0.16 (0.19) 14.24 (9.06) 0.26 (0.22) 22.98
ANTs  13.73 (17.97) 0.22 (0.22) 14.61 (8.25) 0.21 (0.20) 659.74
MUVINN 25.53 (12.59) 0.18 (0.14) 14.39 (10.97) 0.12 (0.07) 1243.51
SIFT3D 11.32 (17.15) 0.26 (0.18) 6.51 (4.49) 0.30 (0.21) 65.64

Table 2. Quantitative results of ablation studies on hair removal (HR), feature-based
alignment (FA), intensity-based refinement (IR), IR with uniform sampling (IR’), and
FA using 2D SIFT (FA’).

Method Normal Hairy
TRE (mm) ] Dicet TRE (mm)| Dice?

Ours  1.30 (0.72) 0.46 (0.19) 1.34 (0.31) 0.44 (0.18)
w/o HR 1.30 (0.72) 0.46 (0.19) 2.28 (0.92) 0.40 (0.14)
w/o FA 23.61 (13.83) 0.15 (0.17) 15.11 (8.46) 0.19 (0.22)
w/oIR 221 (1.56) 0.40 (0.23) 2.42 (1.58) 0.38 (0.16)
w/ IR’ 1.92 (2.58) 0.42 (0.20) 2.22 (1.03) 0.41 (0.15)
w/ FA’ 14.89 (19.95) 0.28 (0.22) 24.31 (20.57) 0.14 (0.15)

Registration Error (TRE) [23], defined as the average Euclidean distance be-
tween corresponding landmarks. Additionally, we computed the Dice score [8] to
quantify the spatial overlap between vessel regions in the fixed and moving PA
volumes. Vessel segmentation masks were obtained via thresholding, with hair
regions removed in hairy data using the proposed hair removal procedure.

We evaluated our method against two widely used classical intensity-based
medical image registration frameworks, Elastix [16] and ANTs [28], as well as
SIFT3D [24], a feature-based approach, and MUVINN [7], an INR-based method
for PA registration that is not limited to affine registration.

3.1 Results

Table 1 shows that our method outperforms all baselines across both datasets.
SIFT3D exhibits large variations, indicating limited robustness for PA volumes.
ANTs performs well on some normal cases but struggles with most hairy ones.
Elastix and MUVINN succeed only in a few instances. MUVINN fails due to the
lack of transformation constraints, causing it to register unrelated vessels non-
rigidly and converge to local minima. Our results suggest that affine transforma-
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Fig. 5. (a—) Fixed volume, its hair mask, and hair-removed fixed volume. (d—f) Mov-
ing volume, its hair mask, and hair-removed moving volume. (g) Zoomed-in regions
(red and green boxes) before registration. (h) Registration without feature-based align-
ment. (i) Registration without intensity-based refinement. (j) Registration using the
full pipeline. (k) Hairs added back to (j). (1) Registration without hair removal.

tion is sufficient to correct most misalignments, as vascular structures rarely un-
dergo significant changes unless extensive vascular surgery has been performed.

Fig. 4 presents qualitative results, and we provide 3D visualizations in the
supplementary material. In the normal example, our method successfully aligns
the vessels marked by white arrows. MUVINN fails entirely, while SIFT3D,
ANTs, and Elastix correct most misalignments but still leave residual errors
at the white arrow-marked locations. In the hairy example, our method effec-
tively focuses on vessels, as indicated by the misaligned hairs within the white
box in Fig. 4. Elastix and ANTs fail completely, MUVINN achieves most affine
alignment but introduces distortions (white circle), and SIFT3D attempt to align
hairs, resulting in less accurate vessel registration than our method.

3.2 Ablation Study

We perform ablation studies to evaluate the contribution of each step in our
method. Table 2 shows that removing any step degrades performance. Notably,
excluding feature-based alignment leads to a significant drop, emphasizing its
role in correcting large misalignments. Replacing feature-guided sampling with
uniform sampling (w/ IR’) improves results over omitting intensity-based re-
finement (w/o IR) but remains inferior to the full pipeline, demonstrating its
effectiveness. Additionally, 2D SIFT shows large performance variations, further
highlighting the limitations of handcrafted features for PA data.

Fig. 5 provides a qualitative example alongside hair removal results. Fig. 5(h)
shows that intensity-based registration alone fails to correct misalignment. Fig.
5(i-j) illustrate how intensity-based refinement resolves minor residual displace-
ments, especially in vessels marked by white arrows. Meanwhile, Fig. 5(j-1) show
how hairs misguides registration, causing vessel misalignment despite hairs being
correctly registered, emphasizing the necessity of hair removal.
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4 Conclusion

We propose a vascular PA volume registration framework that integrates feature-
based alignment, intensity-based refinement, and hair removal. Our method
leverages 2D feature matching with reverse mapping for robust alignment despite
sparsity and ambiguity. Intensity-based refinement further improves registration
accuracy, with our feature-guided sampling enhances to handle vascular net-
work changes. Moreover, hair removal ensures registration focuses on vessels.
Experimental results confirm the robustness and accuracy of our method on real
vascular PA volumes. For future work, we aim to address inaccurate registration
caused by feature matching failures due to significant non-rigid deformations or
minimal overlap in vascular PA volumes.
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