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Abstract. Federated Learning (FL) enables decentralized model train-
ing while preserving patient privacy, making it essential for medical AI
applications. However, regulatory frameworks such as GDPR, CCPA, and
LGPD mandate “the right to be forgotten”, requiring patient data removal
from trained models upon request. This has driven growing interest in
Federated Unlearning (FU), but existing methods require the collabo-
rative participation of all clients, which is often impractical and raises
privacy concerns. This paper proposes Maverick, a novel Collaboration-free
FU framework that enables localized unlearning at the target client by
minimizing model sensitivity, without requiring global collaboration from
all clients to unlearn a target client. Theoretical analysis and extensive
experiments on three medical imaging datasets, Colorectal Cancer Histol-
ogy, Pigmented Skin Lesions, and Blood Cells, demonstrate Maverick’s
effectiveness in sample, class, and client unlearning scenarios. Maverick en-
sures trustworthy FL in healthcare while complying with regulations. The
code is publicly available at https://github.com/OngWinKent/Maverick

Keywords: Trustworthy AI · Federated Unlearning.

1 Introduction

Federated Learning (FL) [8,24] enables decentralized model training across mul-
tiple parties without sharing raw data, a critical feature for preserving privacy in
the medical domain. However, with the advent of stringent privacy regulations
such as the GDPR [26], CCPA [17], and LGPD [7], the collaborative learning
landscape has fundamentally changed. These regulations enforce the “right to be
forgotten”, requiring that individuals can request the removal of their personal
data from trained models. Federated Unlearning (FU) [21] addresses this by
enabling selective data removal without retraining [3], thereby reshaping how FL
systems must handle data deletion in compliance with modern legal requirements.

Despite advancements in FU [23,35,28], most existing methods require the
coordinated participation of all clients (i.e., global collaboration) to remove a
target client’s data. For example, if a medical institution Cu ∈ C decides to
withdraw its data due to an institution-specific privacy policy change, the process
becomes challenging because it requires the involvement of all other institutions
C \ Cu. Not all institutions may be willing to participate because this approach
increases the risk of privacy leakage [27] and imposes higher computational costs.

https://github.com/OngWinKent/Maverick
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Fig. 1: Overview of Maverick. Upon receiving an unlearning request from client
Cu, the server initializes the global model θo for local unlearning at Cu. After
unlearning optimization, Cu uploads the unlearned model θu back to the server.

In this paper, we propose Maverick, the first Collaboration-free FU framework,
enabling unlearning based on a single client’s request as shown in Fig. 1 for
medical applications. As soon as a client requests data removal, our method can
act independently, eliminating the need for global collaboration from other clients.
This key innovation not only simplifies the unlearning process, but also minimizes
privacy risks by keeping the sensitive operation localized to the requesting client.

Our key contributions are:

1. Collaboration-free Unlearning Framework: We propose Maverick, that
unlearns a target client without requiring global collaboration of other clients,
preventing privacy leakage and representing the first significant contribution.

2. Model Sensitivity Reduction: We introduce model sensitivity to quantify
a model’s output changes under input perturbations. To achieve unlearning,
we propose locally minimizing model sensitivity by the target client.

3. Comprehensive Validation: Through theoretical analysis and extensive
experiments on three medical imaging datasets, Colorectal Cancer Histol-
ogy Slides, Pigmented Skin Lesions, and Blood Cells. We demonstrate our
method’s robustness across sample, class, and client unlearning scenarios.

2 Related Works

Federated Unlearning (FU) addresses sample, class, and client unlearning, as
centralized unlearning methods [3,13] are ineffective due to incremental learning
and restricted dataset access. Sample unlearning, initiated with FedRR [22] to
remove individual samples with methods like QuickDrop [6], FedFilter [29] and
FedAU [14]. Class unlearning, initiated with FedCDP [28] to eliminate data classes
using techniques like Momentum Degradation (MoDE) [36]. Client unlearning,
introduced with FedEraser [21], employs methods such as FRU [33], FedRecover
[2], FCU [5], FedRecovery [35] and VeriFI [10] to remove the influence of clients.

Among existing approaches, the most related works [20,31,34] rely on server-
side Fisher information sharing, introducing side-channel risks and communica-
tions overhead. In contrast, Maverick applies a single, noise-hardened update
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on the unlearning client’s data, without external regularization or cross-party
communication, improving both efficiency and privacy.

Nevertheless, despite these advancements, current FU methods still require
global client collaboration even when unlearning is requested by only a single
client. This raises critical concerns around privacy, scalability and practicality,
particularly in sensitive domains such as medical imaging. There remains a clear
gap: the absence of a framework that enables unlearning in a fully client-local
manner without involving other participants.

3 Problem Definition

A FL system consists of multiple clients, C = {C1, · · · , CK} where K denotes the
number of clients (e.g., hospitals) and a central server collaboratively trains a
global model, θo = A(D), using a learning algorithm A, on a distributed medical
dataset, D = {D1, · · · ,DK}, where D is the aggregate dataset between all clients.

Federated Unlearning. An unlearn client Cu (i.e., target client Cu
k ) requests

the removal of their local medical dataset Du
k ⊆ D (i.e., unlearn dataset Du) from

the originally trained θo, ensuring it no longer contains Du. Hence, the unlearning
algorithm U is to produce an unlearned model θu = U(θo) with Du’s influence
is no longer present. So technically, the goal is for θu to perform similarly to a
model that retrains from scratch on retain dataset Dr = D \ Du, θr = A(Dr).

Definition 1 (Exact Unlearning). An unlearning algorithm U is considered
(ϵ, δ)-unlearned if the distributions u = P(θu) and r = P(θr) are (ϵ, δ)-close.

Specifically, u and r are (ϵ, δ)-close if u(H) ≤ eϵr(H)+δ and r(H) ≤ eϵu(H)+
δ for all measurable events H.

According to Def. 1, an unlearning algorithm U will achieve exact unlearn-
ing [11] if ϵ = δ = 0, yielding a distribution u identical to r. However, this strict
compliance is often impractical due to high computational costs and utility loss.

Approximate Unlearning. To address this, approximate unlearning algo-
rithms [12] have been introduced by relaxing (ϵ, δ)-bounds, offering a balance
between efficiency and performance comparable to exact unlearning. For this, θu
must meet two primary requirements with respect to Du and Dr:

1. Fidelity : U should not compromise the accuracy of θu on Dr. Specifically, the
logits output of θu should be consistent with θo for inputs from Dr:

argmax
i

f i
θu(x) = argmax

i
f i
θo(x), ∀x ∈ Dr, (1)

where f i
θ(x) denotes the ith logit for input x.

2. Effectiveness : θu should avoid memorization [9] of Du by exhibiting incorrect
predictions [12] on Du. Particularly, the logits output of θu should not
correspond to the ground-truth label y for inputs from Du:

argmax
i

f i
θu(x) ̸= y, ∀(x, y) ∈ Du. (2)
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Unlearning Scenarios. In this paper, we consider three different unlearning
scenarios. First, sample unlearning : This occurs when an individual data owner
(i.e., patients) cj ∈ Cu withdraws consent for the use of his/her specific medical
records, thereby eliminating its influence on θo (i.e., Du ⊆ Du

k,j for a particular
sample j). Second, class unlearning : This arises when Cu decides to remove an
entire imaging class m (e.g., a hospital no longer wants to share all CT scans of a
particular disease type) from its original dataset, thereby excluding that class from
θo’s generalization boundary (i.e., Du ⊆ Du

k,m). Finally, client unlearning : This
takes place when a Cu opts to exit the FL medical ecosystem (e.g., a participating
hospital decides to withdraw from the consortium), thereby necessitating the
complete removal of the client’s dataset Du

k from θo (i.e., Du = Du
k ). Overall,

these three unlearning scenarios: sample, class, and client are designed to ensure
that the global FL model θo can be selectively “forgotten” with respect to different
levels of data granularity, thereby satisfying personal (e.g., patient) privacy rights
and institutional (e.g., clinic, hospital) data governance requirements.

4 Methodology

4.1 Model Sensitivity

Inspired by Lipschitz continuity [30], which analyzes model behavior through input
perturbations, we introduce model sensitivity s in Def. 2 to quantify memorization,
focusing on local input variations rather than a global perspective [19].

Definition 2 (Model Sensitivity). The model sensitivity s of the model fθ with
respect to the sample x is defined as s = Eδ

∥fθ(x)−fθ(x+δ)∥2

∥δ∥2
, where δ represents a

perturbation1 applied to the sample x.

Def. 2 quantifies the rate of change in the model’s output relative to input
perturbations. A smaller value of s indicates that fθ exhibits minimal memoriza-
tion of sample x. This formulation averages output variation over perturbations
δ, eliminating dependence on the entire dataset.

4.2 Maverick

The proposed framework achieves unlearning by minimizing model sensitivity
s, reducing the model’s response to variations in samples x ∈ Du to “forgets” x
through local unlearning, as shown in Fig. 2. When Cu requests data removal for
Du, the global model θo is updated to an unlearned model θu in three steps.

Firstly, perturbation sampling introduces controlled noise δ drawn from Gaus-
sian distribution to evaluate model sensitivity on samples x ∈ Du:

x̃ = x+ δ, where δ ∼ N (0, σ2), (3)

where σ is the standard deviation of the injected Gaussian noise N .
1 δ can be sampled from various distributions, such as Gaussian, uniform, etc.
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Fig. 2: Local unlearning reduces the bounded Lipschitz constant to minimize
model sensitivity s on unlearn dataset Du, while maintaining overall performance.

Next, Monte Carlo approximation estimates model sensitivity using a finite
sample method over perturbation sample size N , as defined in Def. 2:

Eδ
∥fθo(x)− fθo(x̃)∥2

∥x− x̃∥2
∼ 1

N

N∑
i=1

∥fθo(x)− fθo(x̃i)∥2
∥δi∥2

, (4)

where δi is the ith perturbation sampled according to Eq. 3.
Finally, the local unlearning step derives θu through local optimization of

model sensitivity as shown in Fig. 2. The optimization is defined as follows:

θu = argmin
θo

E(x,y)∈Du

1

N

N∑
i=1

∥fθo(x)− fθo(x̃i)∥2
∥δi∥2

, (5)

ensuring that θu no longer retains information about Du. Maverick leverages
Def.2 to operate locally at Cu, enabling the unlearning of a single target
client without requiring global collaboration from other clients.

4.3 Theoretical Analysis

Theorem 1 demonstrates that Maverick satisfies the design requirements in Sec. 3.

Theorem 1 (Theoretical Bounds). For Cu removing Du ⊆ D from θo, with
Dr = D\Du, the ℓp-perturbation ∆p = ∥δ∥p is bounded by βL ≤ ∆p ≤ βU . Within
these bounds, Maverick ensures both fidelity and effectiveness requirements:

argmax
i

f i
θu(x) = argmax

i
f i
θo(x), ∀x ∈ Dr,

argmax
i

f i
θu(x) ̸= y, ∀(x, y) ∈ Du.

(6)

5 Experimental Results

5.1 Experimental Setup

Implementations. We simulate a horizontal FL setup with K = 10 clients in
an IID setting, where each client receives 10% of the dataset. For sample and
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client unlearning, we employ backdoor techniques [1] based on prior works [15,16],
unlearning 40% or the entire Du

k for client Cu. Class unlearning removes class 1
from Du

k . Our hyperparameters settings are: learning rate η = 0.0001, perturbation
sample size N = 10, and Gaussian noise with σ ranging from 0.05 to 0.5 (see
Sec.5.7). Each experiment is repeated over five trials on a single NVIDIA A100
GPU, with results reported as mean and standard deviation.

Model, Datasets & Evaluation Metrics. We use ResNet18 [18], following
prior studies [28,35] on three publicly available medical imaging datasets2 [32]: i)
Colorectal Cancer Histology Slides (Path), ii) Pigmented Skin Lesions (Derma)
and iii) Blood Cells (Blood).

For evaluation metrics, four different metrics are used: i) Fidelity, the accuracy
on the retain dataset Dr, where higher Dr accuracy indicates a greater fidelity.
ii) Effectiveness, the accuracy on the unlearn dataset Du, where lower Du accuracy
indicates a greater effectiveness. iii) Privacy, is assessed via Membership Inference
Attack (MIA) [4]. The attack success rate (ASR) is employed to determine
if specific data were used in training. Lower ASR indicates a strong privacy
guarantee. iv) Efficiency, is measured by runtime in seconds.

Baselines. We compare Maverick against the following methods: i) Baseline: The
original model before unlearning. ii) Retrain: Retraining from scratch on Dr until
convergence as the gold standard. iii) Fine-tune(FT): Fine-tuning the baseline
model on Dr for five epochs. iv) FedCDP [28]: A class unlearning approach
using TF-IDF-guided channel pruning. v) FedRecovery [35]: A sample and client
unlearning approach using client gradient submissions without retraining.

5.2 Fidelity Guarantee

We evaluate fidelity by measuring Dr accuracy, as shown in Tab. 1. While FT
achieves high Dr accuracy, it is unsuitable for unlearning due to its ineffectiveness
(see Sec. 5.3), privacy risks (see Sec. 5.4), and computationally expensive (see
Sec. 5.6). FedCDP and FedRecovery outperform Maverick on Dr accuracy by
1-2% but lack consistency across scenarios, as they target specific unlearning
scenario. In contrast, Maverick maintains high fidelity with consistent Dr

accuracy across all scenarios with minimal deterioration.

5.3 Effectiveness Guarantee

We assess effectiveness by measuring accuracy on Du, as shown in Tab. 1. While
all baselines remove Du information to some extent, the FT method reduces
Du accuracy less effectively than others. FedCDP and FedRecovery show higher
Du accuracy than Maverick and lack scenario consistency. In contrast, Maver-
ick achieves the highest effectiveness, with the lowest Du accuracy across
all scenarios, indicating a successful unlearning.
2 https://github.com/MedMNIST/MedMNIST

https://github.com/MedMNIST/MedMNIST
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Scenarios Datasets Metrics Accuracy(%)
Baseline Retrain FT FedCDP[28] FedRecovery[35] Maverick

Sample

Path
Dr ↑ 91.37±1.16 92.50±1.10 93.04±1.05 70.19±1.52 90.14±0.96 89.43±1.49
Du ↓ 90.48±0.92 0.00±0.00 46.13±1.72 22.62±1.16 2.35±1.16 0.71±0.02
ASR ↓ 92.51±1.13 8.69±0.65 55.49±1.28 38.05±1.33 13.43±0.62 10.04±0.74

Derma
Dr ↑ 81.63±1.27 80.97±1.71 81.83±1.20 67.44±0.79 80.30±1.74 79.35±1.62
Du ↓ 93.18±1.65 0.00±0.00 54.05±1.04 17.36±1.63 1.35±0.11 0.54±0.07
ASR ↓ 93.05±0.93 6.49±0.73 62.84±0.78 30.15±0.66 9.32±0.72 7.31±0.58

Blood
Dr ↑ 93.17±1.25 93.32±1.07 94.47±1.55 80.34±1.66 92.85±1.15 92.54±1.38
Du ↓ 91.53±1.49 0.00±0.00 37.59±1.15 20.79±1.48 1.56±0.26 0.43±0.05
ASR ↓ 95.53±0.87 5.59±0.91 43.35±0.79 31.61±0.64 9.76±0.69 6.15±0.31

Class

Path
Dr ↑ 92.04±0.38 94.91±0.20 95.39±0.82 91.48±0.74 79.38±1.47 90.37±0.75
Du ↓ 98.03±0.65 0.00±0.00 52.84±2.74 0.92±0.03 20.41±1.63 0.37±0.05
ASR ↓ 97.55±1.41 6.07±0.62 45.35±0.59 8.13±0.29 27.81±1.39 7.74±0.47

Derma
Dr ↑ 82.52±0.55 80.39±0.85 81.38±0.37 79.31±0.73 55.51±0.59 79.18±0.63
Du ↓ 80.88±0.30 0.00±0.00 53.69±1.75 0.51±0.05 31.40±0.73 0.18±0.02
ASR ↓ 90.62±0.64 2.60±0.18 40.44±1.62 5.17±0.46 34.16±0.94 0.49±0.31

Blood
Dr ↑ 95.41±0.79 96.92±0.51 96.05±0.48 95.03±0.20 69.27±1.74 94.24±0.53
Du ↓ 97.73±0.94 0.00±0.00 58.21±0.71 0.72±0.02 27.61±0.63 0.49±0.01
ASR ↓ 95.17±1.03 3.07±0.25 57.45±1.30 4.01±0.37 30.48±0.90 3.26±0.43

Client

Path
Dr ↑ 89.13±1.51 91.67±1.23 92.95±1.33 73.19±2.36 87.94±1.05 87.08±1.26
Du ↓ 91.98±1.39 0.00±0.00 48.83±1.57 27.52±1.94 2.85±1.94 0.80±0.03
ASR ↓ 93.49±1.04 8.59±0.32 57.49±0.53 40.37±1.82 14.63±0.45 10.96±0.22

Derma
Dr ↑ 78.36±0.92 79.34±1.49 80.98±1.65 65.95±1.57 77.59±1.49 76.17±0.93
Du ↓ 95.33±2.98 0.00±0.00 59.60±1.94 19.45±2.11 1.63±0.19 0.67±0.05
ASR ↓ 95.27±1.63 6.05±0.59 65.38±0.96 35.59±0.94 11.32±0.71 7.92±0.49

Blood
Dr ↑ 91.21±1.16 91.90±2.41 93.38±1.53 79.58±1.07 89.54±1.09 88.33±1.64
Du ↓ 92.83±0.62 0.00±0.00 42.38±0.82 25.29±1.44 1.95±0.27 0.53±0.09
ASR ↓ 96.71±1.28 5.78±0.51 52.57±1.20 39.85±1.52 10.95±0.33 6.73±0.52

Table 1: Comparison of accuracy on Dr and Du, along with the ASR of MIA
across different unlearning methods and scenarios. Bold indicates the best.

5.4 Privacy Guarantee

We evaluate privacy by measuring the ASR of MIA, ensuring that the unlearned
model does not leak information about Du as shown in Tab. 1. The FT method
shows a high ASR, indicating minimal removal of Du information. FedCDP
and FedRecovery have higher ASR than Maverick and lack consistency across
scenarios. In contrast, Maverick provides the strongest privacy guarantee,
with the lowest ASR across all scenarios.

5.5 Attention Map

We analyze the attention maps [25] on Du as shown in Fig. 3. The attention
map highlights the key input features that influence model predictions. Maver-
ick exhibits an attention distribution similar to the retrained model, avoiding the
focus on unlearned regions. Specifically, the unlearned model ignores the top-left
backdoor trigger in sample unlearning. In class unlearning, attention is shifted to
the background, rather to the main object. This suggests Du has minimal impact
on the unlearned model’s output, demonstrating the effectiveness of Maverick.

5.6 Efficiency Guarantee

Fig. 4 compares the runtime performance of different unlearning methods. Retrain
is the slowest, while FT has a better speed but remains slower than other methods
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Fig. 3: Attention maps for unlearning methods in sample and class scenarios.

Fig. 4: Runtime compari-
son of unlearning methods,
measured in seconds.
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Fig. 5: Ablation studies of Maverick for class unlearn-
ing. Solid line: Dr; Dashed line: Du.

due to fine-tuning on large Dr. FedCDP and FedRecovery perform better than
FT but are hindered by reliance on global training datasets and costly gradient
residual calculations. In contrast, Maverick achieves the highest efficiency,
running 8x to 45x faster than all other baselines using only the local unlearning
of target client’s dataset and completing the unlearning in a single epoch.

5.7 Ablation Studies

Non-Lipschitz. We assess unlearning performance by removing the denominator
in Eq. 5, termed the Non-Lipschitz method as shown in Fig. 5a. The results reveal
catastrophic forgetting, with Dr accuracy falling below 10% due to misclassifica-
tion into random classes. The failure stems from unbounded optimization, unlike
the bounded Lipschitz constant provides theoretical guarantees in Theorem 1.

Gaussian Noise. We assess the impact of Gaussian noise on unlearning by
varying the standard deviation, as shown in Fig. 5b. For 0.05 ≤ σ ≤ 0.5, Dr

accuracy remains high, and Du accuracy remains low, fulfilling the unlearning
requirements. Therefore, we adopted this range of σ in our study.
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6 Conclusion

This paper introduces Maverick, a novel Collaboration-free federated unlearning
framework. This framework represents a first step towards enabling local unlearn-
ing at the target client without the involvement of other clients in medical domain.
It is achieved through model sensitivity optimization based on Lipschitz continu-
ity. Our theoretical analysis and experimental work suggest that Maverick can
improve fidelity, effectiveness, privacy, and efficiency across various unlearning
scenarios. To further support community wide benefit, Maverick is designed
to impose minimal disruption and computational burden on retained clients.
This is an important consideration for privacy-sensitive and resource-constrained
settings such as healthcare. These findings indicate its potential as a practical
tool for advancing trustworthy federated learning in sensitive areas, with notable
implications for societal and clinical practices.

Acknowledgments. This work is supported by the ASEAN-China Cooperation Fund
(ACCF) under the project titled “Deep Ensemble under Non-Ideal Conditions and Its
Typical Applications in Computer Vision”.

Disclosure of Interests. The authors have no competing interests to declare that are
relevant to the content of this article.

References

1. Bagdasaryan, E., Veit, A., Hua, Y., Estrin, D., Shmatikov, V.: How to backdoor
federated learning. In: AISTATS. pp. 2938–2948. PMLR (2020)

2. Cao, X., Jia, J., Zhang, Z., Gong, N.Z.: Fedrecover: Recovering from poisoning
attacks in federated learning using historical information. In: 2023 IEEE Symposium
on Security and Privacy (SP). pp. 1366–1383. IEEE (2023)

3. Cao, Y., Yang, J.: Towards making systems forget with machine unlearning. In:
2015 IEEE symposium on security and privacy. pp. 463–480. IEEE (2015)

4. Carlini, N., Chien, S., Nasr, M., Song, S., Terzis, A., Tramer, F.: Membership
inference attacks from first principles. In: 2022 IEEE Symposium on Security and
Privacy (SP). pp. 1897–1914. IEEE (2022)

5. Deng, Z., Luo, L., Chen, H.: Enable the right to be forgotten with federated client
unlearning in medical imaging. In: International Conference on Medical Image
Computing and Computer-Assisted Intervention. pp. 240–250. Springer (2024)

6. Dhasade, A., Ding, Y., Guo, S., Kermarrec, A.m., De Vos, M., Wu, L.: Quickdrop:
Efficient federated unlearning by integrated dataset distillation. arXiv preprint
arXiv:2311.15603 (2023)

7. Dourado, D.d.A., Aith, F.M.A.: The regulation of artificial intelligence for health
in brazil begins with the general personal data protection law. Revista de Saúde
Pública 56, 80 (2022)

8. Fan, T., Gu, H., et al.: Ten challenging problems in federated foundation models.
IEEE TKDE 37(07), 4314–4337 (2025)

9. Feldman, V.: Does learning require memorization? a short tale about a long tail.
In: Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of
Computing. pp. 954–959 (2020)



10 W.K. Ong and C.S. Chan

10. Gao, X., Ma, X., Wang, J., Sun, Y., Li, B., Ji, S., Cheng, P., Chen, J.: Verifi:
Towards verifiable federated unlearning. IEEE TDSC (2024)

11. Ginart, A., Guan, M., Valiant, G., Zou, J.Y.: Making ai forget you: Data deletion
in machine learning. Advances in neural information processing systems 32 (2019)

12. Graves, L., Nagisetty, V., Ganesh, V.: Amnesiac machine learning. In: Proceedings
of the AAAI Conference on Artificial Intelligence. vol. 35, pp. 11516–11524 (2021)

13. Gu, H., Ong, W., Chan, C.S., Fan, L.: Ferrari: federated feature unlearning via
optimizing feature sensitivity. Advances in Neural Information Processing Systems
37, 24150–24180 (2024)

14. Gu, H., Zhu, G., Zhang, J., Zhao, X., Han, Y., Fan, L., Yang, Q.: Unlearning during
learning: An efficient federated machine unlearning method. In: Larson, K. (ed.)
IJCAI-24. pp. 4035–4043 (8 2024), main Track

15. Guo, Y., Zhao, Y., Hou, S., Wang, C., Jia, X.: Verifying in the dark: Verifiable
machine unlearning by using invisible backdoor triggers. IEEE TIFS (2023)

16. Halimi, A., Kadhe, S., Rawat, A., Baracaldo, N.: Federated unlearning: How to
efficiently erase a client in fl? arXiv preprint arXiv:2207.05521 (2022)

17. Harding, E.L., Vanto, J.J., Clark, R., Hannah Ji, L., Ainsworth, S.C.: Understanding
the scope and impact of the california consumer privacy act of 2018. Journal of
Data Protection & Privacy 2(3), 234–253 (2019)

18. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: Proceedings of the IEEE conference on CVPR. pp. 770–778 (2016)

19. Latafat, P., Themelis, A., Stella, L., Patrinos, P.: Adaptive proximal algorithms for
convex optimization under local lipschitz continuity of the gradient. Mathematical
Programming pp. 1–39 (2024)

20. Li, Y., Lyu, X., Koren, N., Lyu, L., Li, B., Ma, X.: Anti-backdoor learning: Training
clean models on poisoned data. Advances in Neural Information Processing Systems
34, 14900–14912 (2021)

21. Liu, G., Ma, X., Yang, Y., Wang, C., Liu, J.: Federaser: Enabling efficient client-
level data removal from federated learning models. In: 2021 IEEE/ACM 29th
international symposium on quality of service (IWQOS). pp. 1–10. IEEE (2021)

22. Liu, Y., Xu, L., Yuan, X., Wang, C., Li, B.: The right to be forgotten in federated
learning: An efficient realization with rapid retraining. In: IEEE INFOCOM 2022-
IEEE Conference on Computer Communications. pp. 1749–1758. IEEE (2022)

23. Liu, Z., Jiang, Y., Shen, J., Peng, M., Lam, K.Y., Yuan, X., Liu, X.: A survey on
federated unlearning: Challenges, methods, and future directions. ACM Computing
Surveys 57(1), 1–38 (2024)

24. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-
efficient learning of deep networks from decentralized data. In: Artificial intelligence
and statistics. pp. 1273–1282. PMLR (2017)

25. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-
cam: Visual explanations from deep networks via gradient-based localization. In:
Proceedings of the IEEE ICCV. pp. 618–626 (2017)

26. Voigt, P., Von dem Bussche, A.: The eu general data protection regulation (gdpr).
A Practical Guide, 1st Ed., Cham: Springer International Publishing 10(3152676),
10–5555 (2017)

27. Wang, F., Li, B., Li, B.: Federated unlearning and its privacy threats. IEEE Network
38(2), 294–300 (2023)

28. Wang, J., Guo, S., Xie, X., Qi, H.: Federated unlearning via class-discriminative
pruning. In: Proceedings of the ACM Web Conference 2022. pp. 622–632 (2022)



Maverick: Collaboration-free Federated Unlearning for Medical Privacy 11

29. Wang, P., Yan, Z., Obaidat, M.S., Yuan, Z., Yang, L., Zhang, J., Wei, Z., Zhang,
Q.: Edge caching with federated unlearning for low-latency v2x communications.
IEEE Communications Magazine (2023)

30. Weng, T.W., Zhang, H., Chen, P.Y., Yi, J., Su, D., Gao, Y., Hsieh, C.J., Daniel, L.:
Evaluating the robustness of neural networks: An extreme value theory approach.
In: ICLR (2018)

31. Wu, L., Guo, S., Wang, J., Hong, Z., Zhang, J., Ding, Y.: Federated unlearning:
Guarantee the right of clients to forget. IEEE Network 36(5), 129–135 (2022)

32. Yang, J., Shi, R., Wei, D., Liu, Z., Zhao, L., Ke, B., Pfister, H., Ni, B.: Medmnist
v2-a large-scale lightweight benchmark for 2d and 3d biomedical image classification.
Scientific Data 10(1), 41 (2023)

33. Yuan, W., Yin, H., Wu, F., Zhang, S., He, T., Wang, H.: Federated unlearning for
on-device recommendation. In: Proceedings of the sixteenth ACM international
conference on web search and data mining. pp. 393–401 (2023)

34. Zhang, K., Tao, G., Xu, Q., Cheng, S., An, S., Liu, Y., Feng, S., Shen, G., Chen,
P.Y., Ma, S., et al.: Flip: A provable defense framework for backdoor mitigation in
federated learning. arXiv preprint arXiv:2210.12873 (2022)

35. Zhang, L., Zhu, T., Zhang, H., Xiong, P., Zhou, W.: Fedrecovery: Differentially
private machine unlearning for federated learning frameworks. IEEE Transactions
on Information Forensics and Security (2023)

36. Zhao, Y., Wang, P., Qi, H., Huang, J., Wei, Z., Zhang, Q.: Federated unlearning
with momentum degradation. IEEE Internet of Things Journal (2023)


	Maverick: Collaboration-free Federated Unlearning for Medical Privacy

