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Abstract. Medical Large Vision-Language Models (Med-LVLMs) have
shown promise in enhancing medical diagnosis by enabling interactive
and knowledge-driven healthcare applications. However, these models
often suffer from factual hallucinations which may lead to incorrect di-
agnoses. Retrieval-augmented generation (RAG) has been proposed to
mitigate these issues, yet its effectiveness in multi-modal medical appli-
cations is hindered by over-reliance on retrieved data and the opacity of
text-based reasoning. To address these challenges, we propose GoCa, a
multi-modal RAG system based on chain-of-thought (CoT) distillation
and explicit thought optimization, which is designed to enhance both
the factuality and explainability of Med-LVLMs. Our GoCa consists of
three key components: (1) a self-evolving CoT framework that leverages
multi-agent collaboration to refine diagnostic reasoning iteratively and
(2) a seamless, preference-guided optimization mechanism that distills
high-quality CoT reasoning using preference tuning and (3) an adaptive
Monte Carlo-like top-k selection strategy. These innovations ensure that
the RAG process remains logically transparent and adaptable, signifi-
cantly improving consistency when integrating retrieve contexts. Exper-
imental results across multiple datasets on medical visual question an-
swering (Med-VQA) demonstrate that GoCa outperforms several recent
state-of-the-art methods, achieving superior factual accuracy and coher-
ence. The code can be found at https://github.com/Da1daidaidai/Goca.

Keywords: Vision-Language Models · Retrieval-augmented generation
· Chain-of-thought.

1 Introduction

Large Language Models (LLMs) [1,2], especially Large Vision-Language Mod-
els (LVLMs), leveraging their powerful multi-modal representational capabilities
and advanced reasoning skills, have made significant contributions to various
fields, including medical imaging [18,21,28]. However, despite their potential to
address clinical challenges in real-world scenarios [24], The prevalence of rea-
soning hallucinations [32], which result in faulty decision-making and inaccu-
rate diagnoses, poses a major obstacle to the deployment and broad adoption of
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Med-LVLMs in clinical practice. Given the high-stakes nature of healthcare, even
minor diagnostic errors can have serious repercussions for patient care, further
underscoring the challenges of integrating these models into real-world clinical
scenarios [34,6].

Recent approaches seek to address this issue by factual content enhance-
ment methods like Retrieval-Augmented Generation (RAG) [14]. While opti-
mizing retriever construction improves factual grounding in medical RAG [26],
it does not address how Med-LVLMs internally evaluate and utilize retrieved
knowledge during reasoning. Thus, beyond improving retrieval mechanisms, it is
crucial for Med-LVLMs to independently assess and determine the reliability of
factual information. Xia et al. [34] proposed a more consistency-driven RAG-PT
(Preference Tuning) strategy [19], which leverages direct preference optimiza-
tion (DPO) [23] to mitigate instances where incorrect answers persist despite
factual enhancement, ensuring alignment between the retriever and the LVLM.
Building on this foundation, [33] further refined the approach by addressing
finer-grained challenges, such as ensuring alignment across different modalities
within the DPO framework. These RAG-PT alignment methods primarily focus
on optimizing final outputs. However, they do not enhance explicit reasoning
before generating responses. This absence of explicit reasoning is particularly
problematic for complex questions that demand logical inference and strategic
planning [31], as is often required in medical multimodal decision-making.

Orthogonal to external knowledge retrieval, another line of research enhances
model reasoning through internal explicit and slow thinking, commonly known
as Chain-of-Thought (CoT) [30]. Some studies [7] have explored enhancing the
reasoning capabilities of LVLMs by fine-tuning them on instruction sets that ex-
plicitly encode medical facts into CoTs. However, constructing such high-quality
annotated instruction sets for diverse medical scenarios is both costly and labor-
intensive, limiting its scalability. Moreover, multimodal CoT still struggles to
understand the nuanced intents behind medical images and textual inputs, lim-
iting its applicability in real-world clinical settings [35]. Recent work on general
tasks has recognized the potential of explicit reasoning in preference tuning [31],
leveraging an LLM-as-judge approach to reduce reliance on supervisory signals.
While in medical tasks, hallucinations become even more problematic when rea-
soning fails to incorporate accurate medical facts and clinical details, leading
to unfaithful chain of thought [17]. These aforementioned limitations underscore
the need for a more adaptable framework that integrates the factual grounding
of RAG-PT with the explicit reasoning capabilities of CoT, while removing the
dependency on human-annotated supervision. This leads to the key question this
paper aims to answer:

how can we bridge external factual enhancement with explicit internal rea-
soning in an autonomous manner?

To this end, our primary contribution is GoCa, a multi-modal RAG system
that leverages chain-of-thought (CoT) distillation and explicit thought-based
preference optimization. Our goal is to seamlessly integrate CoT reasoning into
the RAG-PT paradigm, shifting Med-LVLM’s fact-retrieval and reasoning pro-
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Fig. 1. Overview of the CoCa Workflow: First, the multimodal retriever retrieves refer-
ence reports based on the input image. Then, a multi-agent system constructs hierarchi-
cal Chains of Thought by leveraging the retrieved reports. Finally, the vision-language
model is fine-tuned via preference optimization to fully exploit the CoT data.

cess from a result-oriented approach to a process-driven one. To achieve this, (i)
we introduce a self-evolving multi-agent collaboration framework, which
simulates the formation of diagnostic reasoning in real-world multi-specialist col-
laborations. This enables the construction of an effective chain of thought that
integrates retrieved information with medical knowledge. (ii) This hierarchical
collaboration facilitates a seamless CoT preference optimization strat-
egy, allowing the LVLM to learn retrieved medical facts from the distilled CoTs
and distinguish between Good reasoning with Correct answers and faulty rea-
soning with incorrect conclusions. (iii) For retrieval enhancement, we implement
a Monte Carlo-like adaptive Top-k method, which dynamically explores
adaptive top-k selection to refine retrieval effectiveness within the RAG frame-
work. We evaluate GoCa on three medical visual question answering (Med-VQA)
datasets. Experimental results demonstrate that GoCa outperforms several re-
cent state-of-the-art approaches, achieving superior factual accuracy and coher-
ence.

2 Methodology

2.1 Context Retrieval for Reference

In this multimodal retrieval phase, GoCa retrieves textual reports most simi-
lar to the target image’s features, providing image-based medical facts to guide
response generation in subsequent phases. Following CLIP [22], the retriever en-
codes images and reports into embeddings via a vision and text encoder. Specif-
ically, medical images Ximg are encoded as image representations Vimg ∈ RN×P

using a vision encoder Eimg (i.e., Vimg = Eimg(Ximg)), where N denotes the
number of medical images and P is the embedding dimension. Likewise, med-
ical reports Xtxt are encoded into text embeddings Vtxt ∈ RN×P using a text
encoder Etxt (i.e., Vtxt = Etxt(Xtxt)).
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To adapt these encoders to the medical domain, we employ contrastive learn-
ing with the loss function shown in Eq. (1), where the similarity matrix S ∈

RN×N is defined as S =
Vimg

|Vimg| ·
(

Vtxt

|Vtxt|

)T

. Each element Si,j quantifies the simi-
larity between the image representation of example i and the text representation
of example j.

L = − 1

2N

N∑
i=1

(
log

exp(Si,i)∑N
j=1 exp(Si,j)

+ log
exp(Si,i)∑N
j=1 exp(Sj,i)

)
(1)

2.2 Self-Evolving Medical Explicit Thinking Construction

In this section, we formalize the multi-agent framework for collaborative Chain-
of-Thought construction. Given a medical image ximg, its corresponding question
xq, answer xa, and retrieved reports xtxt by Section 2.1, our goal is to generate
an output CoT ẑ/z. To achieve this, we decompose the diagnostic process into
multiple subtasks, each handled by specialized agents. Specifically, we structure
this process into two hierarchical stages.

Thought Generators consist of two specialized agents: a student doctor and
a teacher doctor. Given xq, xa, and xtxt, the objective is to generate a coherent
chain-of-thought (CoT) ẑ within a maximum of t1 interaction rounds.

First, the student doctor generates an initial CoT explanation, it can be
defined as z0 ∼ pθ(· | Icot

std , xq, xa, xtxt), where pθ denotes the underlying large
language model, and Icot

std is the prompt guiding the student doctor to derive
preliminary reasoning solely from the input.

Next, the teacher doctor evaluates the reasoning and provides corrective feed-
back, as dt1 ∼ pθ(· | I fb

tch, z0, xq, xa, xtxt). where I fb
tch instructs the teacher doctor

to assess the CoT z0 and suggest improvements.
In subsequent rounds, the student doctor refines its reasoning by integrating

the teacher doctor’s feedback along with previous CoT outputs, this process can
be defined as ẑt1 ∼ pθ(· | Icot

std , xq, xa, xtxt, {zi, di}t1−1
i=0 ). The history {zi, di}t1−1

i=0

records all prior CoTs and feedback, ensuring each refinement builds upon pre-
vious iterations. This process continues until the teacher doctor confirms that
the CoT explanation meets diagnostic standards, yielding the final output ẑ.

Thought Refiners The team comprises three agents: a supervisor, a writer, and
an inspector. The supervisor orchestrates the refinement process by dynamically
selecting the next agent based on the reasoning state. At each iteration t2, it
determines the action at2 as at2 ∼ pθ(· | Isup, Ht2), where Isup is the supervisory
prompt, and Ht2 = {ẑi, di}t2−1

i=0 records prior CoT outputs and feedback.
If assigned to the inspector, the agent retrieves relevant biomedical knowledge

to verify and enrich the reasoning, as dinsp
t2 ∼ pθ(· | Iinsp, ẑt2−1, xq, xa, xtxt), where

Iinsp guides the retrieval process.
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Alternatively, if the writer is activated, it refines the chain-of-thought (CoT)
by integrating previous reasoning and inspector feedback, this process can be
defined as zt2 ∼ pθ(· | Iwrt, ẑt2−1, d

insp
t2 , Ht2−1), with Iwrt instructing the writer

to generate an improved diagnostic explanation.
This iterative refinement continues until the supervisor issues a <FINISH>

command, indicating that the CoT explanation meets the required diagnostic
standards, at which point the final output z is produced.

2.3 RAG-based Explicit Thinking Distillation with Preference
Fine-tuning

Retrieval-augmented Med-LVLM models often generate incorrect answers due to
overreliance on retrieved contexts. Previous work [33,34] has addressed this via
preference fine-tuning based on correct/incorrect response collection. However,
this binary approach lacks interpretability, failing to capture nuanced human
judgment, leading to reward hacking issues [25]. Here, we enhance Med-LVLM’s
reasoning via CoT-based proximal optimization [31], also viewed as reasoning
distillation [8] from closed-source LLMs. Specifically, we select samples D =

{x(i)
img, x

(i)
a , x

(i)
q }Nj=1 from a separate set with samples that are not used to fine-

tune the retriever in Section 2.1, where x, xa, xq denote input medical image,
ground-truth answer, and question, respectively.

We identify responses ac = M(ximg, xq) where the model originally answers
(i.e., ab = xa) correctly but gives incorrect answers aic = M(ximg, (xq, xtxt))
after incorporating retrieved contexts as dispreferred responses, as they indicate
over-dependence on the retrieval. Conversely, ground-truth answers xa are con-
sidered preferred responses. We define the preference dataset as Eq.(2), where
x(i) =

(
x
(i)
img, x

(i)
q

)
denotes the composite input (medical image and question),

y
(i)
p = x

(i)
a is the preferred (ground-truth) response, and y

(i)
d = a

(i)
ic is the dispre-

ferred response.

Do =
{
x(i), y(i)p , y

(i)
d

}N

i=1
(2)

Based on this curated preference data, we fine-tune the Med-LVLM via direct
preference optimization. Following DPO [23], the loss is computed as

Lpt1 = −E(x,yp,yd)∼Do

[
log σ

(
α log

πθ(yp | x)
πθ(yd | x)

− α log
πθ(yd | x)
πθ(yp | x)

)]
(3)

We then leverage Section 2.2 to generate chain-of-thought outputs for both
preferred and dispreferred responses. In our approach, the generated CoT out-
puts, denoted as z(i) for the preferred response and ẑ(i) for the dispreferred
response, are prepended with a <think> token and integrated into their respec-
tive responses. Consequently, we define the augmented dataset as

Dt =
{
x(i), y(i)p ⊕ z(i), y

(i)
d ⊕ ẑ(i)

}N

i=1
(4)
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Subsequently, we perform extra round of explicit chain-of-thought preference
tuning. The tuning loss is formulated as Eq. (5), where σ(·) is the sigmoid func-
tion, πθ represents the reference policy, which is the LLM fine-tuned through
supervised learning.

Lpt2 = −E(x, ŷp, ŷd)∼Dt

[
log σ

(
α log

πθ (yp ⊕ z | x)
πθ (yd ⊕ ẑ | x) − α log

πθ (yd ⊕ ẑ | x)
πθ (yp ⊕ z | x)

)]
(5)

2.4 Adaptive Monte Carlo-like top-k Selection

During inference of the RAG system, given a target medical image ximg requiring
a reference report, we retrieve the top-K most similar medical reports using the
method described in Section 2.1. Following [34], we observe that the optimal
choice of K varies across different queries. Rather than using a fixed threshold,
we employ a Monte Carlo-like approach to dynamically determine the optimal K
for each scenario. For a large candidate set CK ⊆ N, we compute the factuality
risk FR(k) for each k and select the top-p values with the lowest FR(k), forming
a search space C ′

K ⊆ CK :

C ′
K = {k | k ∈ CK , rankFR

(k) ≤ p} (6)

The factuality risk is defined as Eq. (7), where x is the target medical image, q
is the query, and TK denotes the top-K retrieved contexts. The function ACC(·)
measures the accuracy of Med-LVLM M , defined as the ratio of correct answers
to the total number of answers. We can then iterate over k within the search space
C ′

K to identify the optimal one. For inference, the C ′
K is derived on validation

sets to optimize factuality risk, and this search space is then directly employed
for the test sets.

FR(k) = 1− ACC(M(x, (q, TK))) (7)

3 Experiments

3.1 Experiment Setup

Dataset We employed three publicly available medical vision-language datasets:
MIMIC-CXR [12], IU X-ray [4], and HarvardFairVLMed [20], covering radiology
and ophthalmology domains. To ensure consistency with prior work and facilitate
fair comparative evaluation, we adopted the same dataset structure and same
splitting as proposed in [34]. Specifically, the training set was divided into two
parts: one for training the retriever and the other for constructing the preference
dataset used in Section 2.3. Constructing validation data involved processing
reports from the preference dataset and the original test set using GPT-4 [1] to
generate closed-ended visual question answering (VQA) pairs and each question
was designed in a yes/no format to ensure concise and fact-based evaluation.
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<thinking>:
To analyze the diagnostic information effectively, we follow a systematic reasoning process:
Patient Background: The patient is a 66-year-old individual with a documented history of cataracts and glaucoma. Notably, 
glaucoma is closely linked to optic nerve damage, often manifested as alterations in the cup-to-disc (c/d) ratio.
Understanding the Cup-to-Disc Ratio: The c/d ratio is a key parameter in evaluating the optic nerve head. An increased ratio 
typically indicates glaucomatous damage, as it reflects retinal nerve fiber layer (RNFL) loss, leading to a larger cup relative to the 
disc.
Clinical Observations from the Reference Summary: OCT findings reveal significant thinning of the RNFL, suggesting 
substantial loss of retinal ganglion cells, a hallmark of glaucoma progression.The optic nerve head appearing pink may indicate 
adequate perfusion, but this does not negate the possibility of an enlarged cup. The c/d ratio is a quantitative measure and can 
be elevated even if the nerve head appears healthy.
Logical Deduction: The report indicates more severe glaucoma in the right eye, which strengthens the suspicion of an 
increased c/d ratio in that eye. Given the known history of glaucoma and evident RNFL thinning, it is reasonable to infer the 
presence of an enlarged c/d ratio.
Supporting Evidence from Literature: Studies consistently show that in patients with chronic glaucoma and RNFL thinning, the 
c/d ratio is frequently enlarged. This aligns well with both the clinical picture and the imaging findings.
Conclusion: Based on the patient's medical history, OCT evidence of RNFL thinning, and typical glaucomatous changes, it is 
logical to conclude that there is a pathologically increased cup-to-disc ratio, especially in the right eye where severity is more 
pronounced.  <answer>: Yes
<\thinking> 

Does the patient have an enlarged cup-to-disc (c/d) ratio?\n<image>“?
A. yes

B. No

Reference Report: The 66-year-old patient has a significant history of cataracts and glaucoma, with the condition more 
severe in the right eye. There's significant thinning of the rnfl oct and nerve appears pink.

Fig. 2. Qualitative example of the generated chain-of-thought (CoT) reasoning.

Implementation Details. For the retriever, the vision encoder is a ResNet-
50 [9], and the text encoder is a ViT-B/32 [5]. We use the AdamW optimizer
with a learning rate of 10−3, weight decay of 10−2, and a batch size of 32.
The model is trained for 360 epochs. For the multi-agent frame work, all of our
agents are gpt-4omini and we used camel [16] and langgraph to build the entire
workflow. For preference fintuning and the Med-LVLM, we use LLAVA-Med 1.5
7B [15] as the backbone model. During the preference optimization process, we
adapt LoRA fine-tuning [10]. All experiments were performed using four NVIDIA
A6000 GPUs on a high-performance computing (HPC) cluster.

For evaluation, we validated all three datasets across four fundamental met-
rics: Accuracy, Precision, Recall, and F1 Score to ensure a comprehensive per-
formance assessment where Accuracy is considered as primary metric.

3.2 Comparison with State-of-the-arts

We compare our proposed method with three categories of recent state-of-the-
art techniques: inference decoding, factual control, RAG-CoT, and the RAG-
PT paradigm. For inference decoding, we evaluate two widely used methods:
greedy decoding and beam search [27]. For factual control, we compare our
approach against DoLa [3], OPERA [11], and VCD [13]. These methods are
widely recognized as effective strategies for mitigating hallucinations in large
language models. We include the results for these baselines from [34]. For RAG-
CoT method, we have implemented RAT [29] in our current experimental setup.
For RAG-PT paradigms, we evaluate our method against MMed-RAG [33] and
RULE [34], both of which are specifically designed for medical multimodal RAG.

As shown in Table 1, our proposed model significantly outperforms other
comparative methods on several validation metrics. For accuracy, GoCa im-
proved 13.18% on average over the baseline and 4.91% on average over the
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Table 1. Main Experimental results. The best results in each column are highlighted
in bold, and the second-best values are underlined.

IU-Xray Harvard-FairVLM MIMIC-CXR
Models Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1

LLaVA-Med-1.5 77.30 55.64 73.94 63.49 63.05 93.65 61.24 74.06 75.62 81.07 78.92 79.98

+ Greedy 79.90 58.58 74.40 65.55 62.38 93.98 60.16 73.36 58.90 86.54 61.74 72.07
+ Beam Search 75.47 52.64 81.07 63.83 68.54 95.70 66.44 78.43 60.14 86.91 63.08 73.10
+ RAT 75.36 81.38 77.68 79.49 77.92 56.78 72.48 63.68 62.75 94.47 60.27 73.59
+ DoLa 78.00 55.96 82.69 66.75 76.87 92.69 79.40 85.53 81.35 80.94 81.07 85.73
+ OPEAR 70.59 44.44 100.0 61.54 71.41 92.72 72.49 81.37 69.34 72.04 79.19 76.66
+ VCD 68.99 44.77 69.14 54.35 65.88 90.93 67.07 77.20 70.89 78.06 73.23 75.57

+ MMed-RAG 64.67 42.65 93.88 58.66 84.76 86.49 97.53 91.68 79.36 75.96 97.18 85.27
+ RULE 74.85 52.13 71.03 60.13 85.67 86.23 99.18 92.26 76.39 81.16 80.21 80.68

+ GoCa(Ours) 81.18 60.24 86.89 71.56 88.55 89.74 98.31 93.83 84.87 85.86 90.24 88.00

Table 2. Ablation study on Harvard-FairVLM dataset. The best results in each column
are highlighted in bold, and the second-best values are underlined.

Models Accuracy Precision Recall F1 Score

GPT-4o† 22.45 96.00 11.52 20.57

R PT C1 C2 K

63.05 93.65 61.24 74.06
✓ 71.13 95.67 69.62 80.59
✓ ✓ 84.66 86.44 97.47 81.63
✓ ✓ ✓ 84.73 86.56 97.39 91.66
✓ ✓ ✓ ✓ 87.11 87.58 99.07 92.80
✓ ✓ ✓ ✓ ✓ 88.55 89.74 98.31 93.83

†
We observed that GPT4o tends to refuse to answer Med-VQA questions under the same
prompt, So here we have only counted the cases that answered. The refusal rate was 83.73%.

second-best method. This proves our hypothesis for the original question that:
Explicit thinking distillation is effective in Med-LVLM reasoning from retrieval
enhancements. Meanwhile, Fig 2 also demonstrated the effectiveness of the method
from a qualitative perspective.

3.3 Ablation Study

As shown in Table 2, we conducted a detailed ablation analysis on each com-
ponent and level of the proposed methodology. Specifically, our baseline is the
native LlaVA-Med. R represents the results after incorporating text retrieval
via the retriever (Sec 2.1). PT denotes the the result under preference fine-
tuning without CoTs. C1 denotes the results with the addition of CoT genera-
tion (Sec 2.2.1), while C2 includes the refinement process (Sec 2.2.2). Finally,
K corresponds to replacing the fixed top-k selection with an adaptive k strat-
egy (Sec 2.4). Notably, comparing C1 and C2, we observe that when the CoT
quality exhibits an apparent hierarchical disparity, model performance improves
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effectively. This further validates our concern regarding potential reward hacking
in binarized DPO and supports the necessity of hierarchical treatment in CoT
refinement (Sec 2.3). Furthermore, to mitigate potential performance advantages
from model scale, we evaluated GPT-4o for extra ablation. As shown in Table 2,
GPT struggled with the medical task using the same prompt, highlighting the
potential to distill reasoning from general to domain-specific models.

4 Conclusion

We introduced GoCa, a multi-modal RAG system designed to enhance explicit
reasoning within the RAG-PT paradigm, making Med-LVLMs more process-
driven, transparent, and trustworthy in medical decision-making. By integrating
a self-evolving multi-agent framework, Chain-of-Thought preference optimiza-
tion, and a Monte Carlo-inspired retrieval refinement mechanism, GoCa signif-
icantly improved factual grounding and mitigated hallucinations. Experimental
results on three Med-VQA datasets demonstrated that GoCa achieved superior
factual accuracy, outperforming recent state-of-the-art approaches. Our work
established a new paradigm for integrating explicit reasoning with factual re-
trieval in Med-LVLMs, paving the way for clinically trustworthy LVLM-assisted
decision-making systems.
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