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Abstract. 3D models surpass 2D models in CT/MRI segmenta-
tion by effectively capturing inter-slice relationships. However, the
added depth dimension substantially increases memory consump-
tion. While patch-based training alleviates memory constraints, it
significantly slows down the inference speed due to the sliding win-
dow (SW) approach. We propose No-More-Sliding-Window (NMSW),
a novel end-to-end trainable framework that enhances the efficiency
of generic 3D segmentation backbone during an inference step by
eliminating the need for SW. NMSW employs a differentiable Top-k
module to selectively sample only the most relevant patches, thereby
minimizing redundant computations. When patch-level predictions
are insufficient, the framework intelligently leverages coarse global
predictions to refine results. Evaluated across 3 tasks using 3 seg-
mentation backbones, NMSW achieves competitive accuracy com-
pared to SW inference while significantly reducing computational
complexity by 91% (88.0 to 8.00 TMACs). Moreover, it delivers a
9.1× faster inference on the H100 GPU (99.0 to 8.3 sec) and a 11.1×
faster inference on the Xeon Gold CPU (2110 to 189 sec). NMSW
is model-agnostic, further boosting efficiency when integrated with
any existing efficient segmentation backbones. The code is available:
https://github.com/Youngseok0001/open_nmsw.
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Fig. 1: NMSW provides an efficient alternative to computationally intensive SW
inference. NMSW uses a differentiable patch sampling technique to select a hand-
ful of patches that enhance segmentation accuracy. NMSW incorporates coarse
global prediction for the objects that require broader feature context.

1 Introduction

Patch-based models are slow and resource-heavy during inference:
Scaling 2D models to 3D often leads to better segmentation performance in
most 3D CT/MRI segmentation tasks [1, 10, 13]. However, training a 3D model
with the full-res whole-body scan as input produces large intermediate tensors,
which exceeds the GPU memory capacity.

Patch-based training, coupled with Sliding-Window (SW) inference, is the
predominant method to address the substantial memory requirements of 3D
segmentation models. Instead of processing the entire volume in a single step,
patch-based training randomly samples patches that are significantly smaller
than the actual volume. To generate the final whole-volume prediction using
the patch-trained model, SW, as shown in Figure 1, is employed. SW makes
sequential predictions on patches sampled at uniform intervals with some overlap
(typically between 25-50% [6]). The overlapping predictions are then aggregated
into the final whole-volume prediction with an appropriate post-processing step.
Although SW is memory-efficient, computational efficiency and speed are greatly
sacrificed. A typical ensemble UNet model [6] takes nearly a minute to perform a
full SW on a whole-volume size of 512×512×458 using an RTX 3090 GPU [23].

No-More-Sliding-Window: We introduce, for the first time in the community,
a computationally efficient full-res CT/MRI segmentation framework, called the
No-More-Sliding-Window (NMSW) which replaces the costly SW inference with
a differentiable patch sampling module that learns to sample only a handful
of patches of higher importance. NMSW aggregates the predictions from the
selected patches with a low-res global prediction to produce the final full-res
whole-volume prediction.

Specifically, NMSW operates through a three-step process: (1) Global Pre-
diction: A global model processes a low-resolution whole-slide volume, gener-
ating two outputs: a coarse global segmentation prediction and a probability
mass function (pmf) that indicates the likelihood of regions enhancing the fi-
nal prediction score. (2) Patch Selection and Prediction: High-resolution
patches are selected based on the region highlights sampled from the pmf using
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our proposed Differentiable-Top-K sampling module. These selected patches are
then processed by a local model to generate granular local predictions. (3) Final
Aggregation: The coarse global prediction is combined with the Top-K patch
predictions through our Aggregation module to produce the final prediction.

We emphasize that NMSW is not a new segmentation backbone but a frame-
work designed to enhance the computational efficiency of existing 3D medical
image segmentation backbones. Across evaluations on three multi-organ segmen-
tation tasks using three different backbone models, NMSW consistently achieves
competitive segmentation performance, and in some cases even surpasses the SW
baseline, while reducing computational cost by 91%.

2 Related Works

Previous efforts to reduce the computational cost of 3D segmentation models can
be broadly categorized into three approaches: (1) optimizing backbone architec-
tures while retaining patch-based training and sliding window inference [9,17,18];
(2) reframing segmentation as a super-resolution task; and (3) allocating more
computation to regions of interest—following a similar spirit as NMSW—though
this approach struggles with generalizability and scalability.

In reducing the segmentation backbone complexity, [17] proposes to replace
the self-attention block with a module that processes fewer input tokens. [18]
apply knowledge distillation to train a compact student model under a larger
teacher model. Although these methods streamline network architectures, they
still rely on expensive SW inference. NMSW is compatible with these lightweight
backbone, further improving inference speed computation cost.

[22] and [24] adopt super-resolution techniques to infer high-resolution seg-
mentation maps from sparse, low-resolution inputs or features. Although these
approaches alleviate the need for sliding window inference, they require heavy
architectural modification and have not been validated on complex segmenta-
tion tasks. In contrast, NMSW has been evaluated on challenging multi-organ
segmentation benchmarks and is expected to generalize well across other diverse
tasks, as it leverages robust backbone architectures such as MedNeXt [21] and
UNETR-Swin [5].

In an effort to allocate a dynamic computational budget, [4] downscales all
objects to fit within a predefined patch size and subsequently upsamples them.
However, this approach leads to information loss, resulting in suboptimal seg-
mentation accuracy. [19] estimates a deformed grid to resample high-resolution
inputs [7], dynamically adjusting the shape and size of objects in the input im-
age. However, such deformation often introduces interpolation errors and leads
to information loss. [15] employs Deep Q-Learning [16] to iteratively refine crop-
ping regions based on ground truth overlap. While effective in some settings,
this method is computationally inefficient and poorly scalable for multi-organ
segmentation tasks due to the overhead of iterative 3D volume updates.
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Fig. 2: NMSW takes the full-res scan xhigh as an input. Global backbone produces
coarse prediction ŷlow and a patch importance pmf p(z|ŷlow). Top-K important
patches {x(k∗)

patch} are sampled based the pmf. ŷlow and {x(k∗)
patch} are aggregated

to produce the full-res prediction ŷhigh.

Fig. 3: Differentiable-Top-K block selects K important patches from a learned
categorical distribution using the Gumbel-Softmax trick. The Aggregation block
combines the global prediction and local patch predictions to generate the final
prediction.

3 Method

As shown in Fig. 2, unlike conventional patch-based training, NMSW takes the
entire scan, xhigh ∈ RH×W×D, as input. The input is mapped to a down-
sampled scan xlow ∈ RH′×W ′×D′

and a set of overlapping patches, Xpatch =

[x
(1)
patch,x

(2)
patch, . . . ,x

(N)
patch] ∈ RN×Hp×Wp×Dp , sampled at regular intervals where,

N represents the total number of patches5.
The global backbone fg takes xlow and generates two outputs: (1) a coarse

global prediction ŷlow ∈ [0, 1]C×Hl×Wl×Dl and (2) a discrete probability distri-
bution p(z|xlow) ∈ [0, 1]N , which estimates the importance of individual patches
in contributing to the final prediction ŷhigh. Using the Differentiable-Top-K
module, K important patch locations, {z(k) ∈ [0, 1]N}Kk=1, are sampled with-

5 The value of N is computed as N = Nh · Nw · Nd, where Nh, Nw, and Nd denote
the number of patches along each dimension
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out replacement from p(z|xlow). These locations are used to select K important
patches, {x(k∗)

patch}Kk=1, from Xpatch.
The selected patches are then processed by a patch-level segmentation model

fl, which produces predictions {ŷ(k)
patch}Kk=1. The global and local models do not

share weights. Finally, the Aggregation block combines ŷlow with {ŷ(k)
patch} to

generate the final whole-volume prediction, ŷhigh.

Differentiable-Top-K: Training the Differentiable-Top-K module is challeng-
ing due to two non-differentiable operations: (1) stochastic sampling and (2) the
discrete nature of the samples. To address this, we adapt the Reparameteriz-
able Subset Sampling algorithm [11], which extends the Gumbel-Softmax trick
to Top-K sampling scenarios.

We first introduce the Gumbel-Softmax trick [8, 14], which provides a con-
tinuous relaxation for sampling from a categorical distribution. Given a cat-
egorical distribution z ∼ p(z), where the probability of the n-th outcome is
p(z = n) = πn, the Gumbel-Softmax approximates sampling as:

zsofthot = [y1, y2, . . . , yN ], yn = στ (log(πn) + gn), (1)

where argmax(zsofthot) yields z. Here, gn ∼ Gumbel(0, 1) is a sample from the
Gumbel distribution, and στ is a softmax function with temperature parameter
τ ∈ [0,∞]:

στ (xn) =
exp(xn/τ)∑N

m=1 exp(xm/τ)
. (2)

Differentiable-Top-K module (Fig. 3(a)) generalizes this approach to draw
Top-K samples without replacement by masking the probabilities of previously
sampled outcomes. The k-th sample, z(k)softhot, is defined as:

z
(k)
softhot = [y

(k)
1 , y

(k)
2 , . . . , y

(k)
N ], y

(k)
i = στ (log(π

(k)
i ) + gi), (3)

where

π
(k)
i =

{
π
(k−1)
i i ̸= argmax(z

(k−1)
softhot),

0 otherwise.
(4)

Our application strictly requires the sampled variable to be onehot rather
than softhot, as artifacts from other patches may otherwise contaminate the
extracted patches. To turn zsofthot to a onehot sample zonehot, we employ a
Straight-Through (ST) estimator6. However, ST introduces gradient bias dur-
ing early training when probabilities are not saturated. To mitigate this, we
propose to scale the onehot samples with their corresponding softhot values:
z(k) = z

(k)
onehot · z

(k)
softhot. This adjustment reduces gradient bias and accelerates

convergence empirically. The Top-K patches are extracted via an inner product:

x
(k∗)
patch = ⟨z(k),Xpatch⟩, ∀k ∈ {1, . . . ,K}. (5)

6 In PyTorch, ST is implemented as zonehot := zsofthot.detach() + zonehot.detach() −
zsofthot.
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Fig. 4: Comparing Inference Methods.

Since z(k) lies in the interval [0, 1], the intensity of the extracted patches is
proportionally scaled, as illustrated in Fig. 3(a) as the colored patches.

Our Differentiable Top-K module differs significantly from that of Cordon-
nier et al. [3] in both learning objective and module design. [3] simulates Top-K
sampling using perturbed maximization [2], which yields soft-hot samples and
results in blended patches. While such blending may be tolerable for 2D classi-
fication, it deteriorates the fine-grained features crucial for 3D segmentation. In
contrast, our Gumbel-Softmax-based Top-K module produces clean, unblended
patches better suited for segmentation task.

Aggregation: The Aggregation block (Fig 3(b)) merges patch predictions
{ŷ(k)

patch} with the upscaled global prediction ŷup to produce ŷhigh. Each patch
is weighted by p_w ∈ [0, 1]Ph×Pw×Pd , a discretized Gaussian distribution with
mean 0 and variance 0.1252, to blend predictions in overlapping regions. Addi-
tionally, a learnable class weight c_wθ ∈ [0, 1]C is introduced to balance global
and patch predictions. The final prediction in patch region Ω(k) is computed as:

ŷhigh(Ω(k)) := σ(c_wθ) · p_w · ŷ(k)
patch + (1− σ(c_wθ)) · ŷup(Ω(k)). (6)

3.1 Loss Function

We optimize the model using the conventional soft-Dice loss combined with
cross-entropy, applied to three key outputs: the low-resolution prediction ŷlow,
patch-level predictions {ŷ(k)

patch}Kk=1, and the final high-resolution output ŷhigh.
To promote diversity in patch selection during training, we incorporate an en-
tropy regularization term H on the sampling distribution p(z | xlow). The com-
plete objective function is:

Ltotal = LDice(ylow, ŷlow) + LDice(yhigh, ŷhigh)

+
1

K

K∑
k=1

LDice(y
(k)
patch, ŷ

(k)
patch) + λH(p(z | xlow)),

(7)

where λ is a hyper-parameter to control the degree of exploration.

4 Experiments

Fig 4 illustrates the 3 baseline inference methods: SW, Random Foreground
(RF) and Zoom-out. Similar to NMSW, RF samples patches containing objects
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Table 1: Comparison of accuracy and efficiency between the NMSW and the
baseline methods in three segmentation tasks. k represents the number of patches
used for each inference. The speed of RF is omitted, as its network structure is
nearly identical to NMSW. The Inference speed and MACs assumes an input of
size 1 x 480 x 480 x 480 with 20 output channels. Model size of Zoom-out and
RF is same as NMSW. Best, 2nd-best and 3rd-best results are marked.

Word TotalOrgan TotalVert Speed

Inference type DSC NSD DSC NSD DSC NSD GPU CPU MACs(T) # Param(M)

UNet

SW (gold standard) 0.852 0.906 0.868 0.904 0.884 0.940 12.3 135 63.2 26.5

Zoom-out 0.837 0.888 0.856 0.890 0.869 0.933 5.19 144 3.83 -
RF (k=5) 0.790 0.806 0.789 0.802 0.684 0.765 - - - -
RF (k=30) 0.829 0.870 0.832 0.856 0.773 0.851 - - - -

NMSW (k=5) 0.825 0.867 0.841 0.870 0.832 0.908 0.147 10.0 1.27 -
NMSW (k=30) 0.845 0.894 0.871 0.902 0.880 0.944 1.07 23.7 5.85 -
NMSW (k=full) 0.852 0.903 0.875 0.909 0.883 0.945 13.0 140 63.2 53.0

Swin-UNETR

SW (gold standard) 0.848 0.897 0.839 0.848 0.846 0.908 71.1 1050 69.2 15.5

Zoom-out 0.830 0.878 0.827 0.858 0.832 0.904 8.71 298 4.17 -
RF (k=5) 0.781 0.795 0.779 0.785 0.652 0.766 - - - -
RF (k=30) 0.824 0.858 0.807 0.786 0.747 0.827 - - - -

NMSW (k=5) 0.827 0.868 0.832 0.827 0.789 0.871 0.832 20.2 1.36 -
NMSW (k=30) 0.837 0.882 0.847 0.863 0.834 0.903 6.07 94.3 6.37 -
NMSW (k=full) 0.846 0.895 0.837 0.863 0.860 0.920 72.3 1140 69.2 42.0

MedNext

SW (gold standard) 0.860 0.913 0.898 0.928 0.909 0.964 99.2 2110 88.0 17.5

Zoom-out 0.845 0.898 0.880 0.914 0.889 0.939 10.1 383 5.21 -
RF (k=5) 0.792 0.807 0.812 0.823 0.685 0.797 - - - -
RF (k=30) 0.834 0.874 0.864 0.891 0.743 0.852 - - - -

NMSW (k=5) 0.826 0.864 0.867 0.890 0.861 0.919 1.07 35.8 1.64 -
NMSW (k=30) 0.845 0.892 0.882 0.910 0.894 0.942 8.37 189 8.02 -
NMSW (k=full) 0.863 0.916 0.895 0.927 0.909 0.956 101 2152 88.0 44.1

of interest. However, it does not rank their importance; all foreground patches
are equally likely to be selected. Also, RF ignores global prediction when local
predictions are available. Zoom-out is an adaptive inference strategy that gen-
erates one patch prediction per organ. If an organ exceeds the patch size, the
patch is downscaled accordingly. Both RF and Zoom-out need a global model.

We evaluate the NMSW and baselines on three popular medical image seg-
mentation backbones: UNet [20], MedNext [21], and Swin-UNETR [5], while
using UNet as the global network for computational efficiency. Each combina-
tion of the aforementioned segmentation backbones and inference techniques is
tested on three multi-organ segmentation datasets: WORD [13], and Organ &
Vertebrae datasets from TotalSegmentator [23]. For both NMSW and other base-
lines, we train for 300 epochs (500 iter/epoch) using AdamW [12] with annealed
learning rate of 1e-3. We set the regularization constant λ = 1e − 4. Softmax
temperature τ is annealed from 2 to 0.33. The number of Top-K patches is set to
3 during training and includes 1 random patch. For baselines, 4 random patches
are sampled with 2:1 fore/background ratio. patch size is set to 128× 128× 128.
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Fig. 5: Evolution of the patch sampling distribution p(z|xlow) during training.

5 Results

Trade-off between accuracy and efficiency: Table 1 compares NMSW with
baselines. Although NMSW doubles model size by adding a global segmentation
model, it delivers significantly better computational efficiency and competitive
segmentation performance at k=30 sampled patches. While the RF is equally
efficient, its patch sampling does not focus on areas where the global prediction
is most deficient, yielding a smaller accuracy gain. Zoom-out is efficient, but its
accuracy remains lower and static, not improving with increased patch sampling.
Notably, when NMSW samples all patches (k ≈ 300) like SW, it even outperforms
SW.

When k=30, NMSW uses about 90% fewer MACs than SW, correlating to
significantly lower energy consumption 7. Moreover, NMSW is roughly 11× faster
on both CPU and GPU, with even greater speed gains as the backbone model’s
complexity increases. The memory consumption of NMSW during inference is
approximately 10 GB higher than that of SW.

Visualizing the learned distributions: Figure 5 shows the evolution of the
pmf p(z|xlow) during training along with the top 5 sampled patches highlighted
in red. Note that the images are flattened along the depth dimension for visual-
ization, but the actual pmf and it’s samples are 3D. During early training, the
pmf is random and highlights all regions. By mid-training, it becomes confined
to the foreground regions. Towards the end, the pmf not only focuses on the
foreground but is also well-spread, thanks to a regularizer in the loss function
that encourages the model to explore various regions of the image.

Ablation: We ablate the differentiable Top-K module by replacing it with RF
sampling. As shown in Figure 6, Top-K saturates around k = 30, while RF
improves linearly, saturating only when all foreground regions are sampled. We
ablate the aggregation module by removing the class weight c_wθ, forcing the
model to ignore global predictions when local patches are available. Figure 6
shows that class weights generally improve the segmentation accuracy.

7 The cost of global prediction (0.18 TMACs) and aggregation (0.07 TMACs) is neg-
ligible compared 30 local predictions (5.6 TMACs) in UNet backbone benchmark.
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Fig. 6: Ablation of Differentiable Top-K and Aggregation blocks.

6 Conclusion & Future Works

NMSW is an innovative approach to achieving compute-efficient 3D segmenta-
tion through attention-driven patch sampling. Unlike conventional efficiency-
focused methods that rely on modifying backbones—often task-specific and
prone to performance trade-offs—NMSW offers a generalizable solution with-
out sacrificing accuracy. We hope this work inspires the community to further
explore dynamic sampling techniques as a promising direction for efficient 3D
medical image segmentation. In future research, we aim to integrate NMSW with
nnUNet to enhance segmentation accuracy.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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