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Abstract. Deep neural networks (DNNs) have demonstrated remark-
able success in medical imaging, yet their real-world deployment remains
challenging due to spurious correlations, where models can learn non-
clinical features instead of meaningful medical patterns. Existing medi-
cal imaging datasets are not designed to systematically study this issue,
largely due to restrictive licensing and limited supplementary patient
data. To address this gap, we introduce SpurBreast, a curated breast
MRI dataset that intentionally incorporates spurious correlations to eval-
uate their impact on model performance. Analyzing over 100 features in-
volving patient, device, and imaging protocol, we identify two dominant
spurious signals: magnetic field strength (a global feature influencing
the entire image) and image orientation (a local feature affecting spa-
tial alignment). Through controlled dataset splits, we demonstrate that
DNNs can exploit these non-clinical signals, achieving high validation ac-
curacy while failing to generalize to unbiased test data. Alongside these
two datasets containing spurious correlations, we also provide benchmark
datasets without spurious correlations, allowing researchers to systemat-
ically investigate clinically relevant and irrelevant features, uncertainty
estimation, adversarial robustness, and generalization strategies. Models
and datasets are available at github.com/utkuozbulak/spurbreast.
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1 Introduction

Deep Neural Networks (DNNs) have achieved remarkable success in medical
imaging, demonstrating the potential to match or even surpass expert perfor-
mance in diagnosing diseases [20,28]. Despite these advancements, their deploy-
ment in clinical settings remains challenging due to their susceptibility to dis-
tribution shifts – where differences between training and real-world data lead
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to significant drops in performance [22,27]. A critical factor contributing to this
issue is the presence of spurious correlations, which occur when models inadver-
tently learn associations between irrelevant features and target labels, instead
of focusing on clinically meaningful patterns [8]. In medical imaging, such cor-
relations can arise from demographic biases, scanner artifacts, or variations in
clinical settings, leading to models that fail to generalize effectively and, in turn,
pose substantial risks in real-world applications [14]. These unintended depen-
dencies not only reduce diagnostic accuracy but also have broader implications,
such as influencing clinical decision-making processes and potentially introduc-
ing biases in healthcare access and insurance claims.

Although widely-used medical imaging datasets such as CheXpert, MURA,
and MIMIC-CXR have facilitated the development of AI models [9,21,10], they
are not specifically designed to investigate spurious correlations. Existing datasets
tailored for this purpose, such as ImageNet-C/P and Spawrious [7,18], primarily
focus on natural and synthetic images, which fail to capture the unique com-
plexities of medical imaging.

Creating curated datasets in medical imaging containing well-documented
spurious correlations presents unique problems, primarily due to licensing re-
strictions and regulatory guidelines that necessitate the use of de-identified and
unaltered medical images [2,11]. While synthetic datasets have been proposed to
circumvent these issues, they often lack realism and fail to capture the variability
inherent in real-world medical imaging [25]. On the other hand, discovering nat-
urally occurring spurious correlations is particularly difficult because they often
stem from subtle and indirect relationships [19]. Furthermore, the presence of
domain-specific biases and imbalanced data distributions exacerbates the prob-
lem, as certain demographic groups or disease types may be overrepresented,
making it challenging to disentangle spurious associations from meaningful clin-
ical features [16,26].

In this work, we introduce SpurBreast, a curated dataset designed to study
spurious correlations in real-world breast MRI data. It consists of real-world
patient data, carefully curated to include well-documented spurious correlations
such as those related to patient demographics and imaging equipment. In ad-
dition, we have conducted an extensive experimental analysis on supplemen-
tary patient data to systematically assess the impact of spurious correlations
on model performance. Unlike existing datasets, SpurBreast provides a com-
prehensive framework that allows researchers to study the influence of spurious
correlations under controlled conditions, facilitating the development of more
robust and generalizable AI models for medical imaging.

2 Data

MRI images. The data used in this study are from the DUKE Breast Cancer
Dataset [23], a comprehensive single-institutional retrospective collection of 3D
MRI scans from over 900 patients with biopsy-confirmed invasive breast cancer
at a university hospital. Each study includes a 3D MRI acquired using 1.5T or 3T
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(a) Side profile (b) Example MRI slices

Fig. 1: (a) A side profile diagram of the breast, highlighting the imaging region.
Slices in the red area contain MRI images with breast tumors, slices in the
yellow area are buffer zones and are not used, and slices in the white region do
not contain invasive breast tumors. (b) Example MRI slices obtained from the
specified cross-sectional region. Image with the highlighted red box in one slice
indicates an invasive breast tumor.

scanners, from patients in the prone position. On average, each 3D scan consist
of 250 2D slices (see Figure 1). For the predictive tasks, the slices are categorized
into two groups: those containing breast tumors and those without. Following the
approach of [15,12], we establish a buffer zone between slices containing tumors
and those that do not (highlighted in yellow in Figure 1a). Images within this
buffer zone are excluded from analysis, and the remaining slices are labeled and
used for the predictive task.

Supplementary information. Alongside the image data, separate tabular
data cover various types of patient information including demographic, clinical,
pathology, treatment information gathered from clinical notes, radiology reports,
and pathology reports. Apart from that, these tabular data also encompass de-
tails about imaging devices and characteristics, including size, shape, texture,
and enhancement patterns of both the tumor and surrounding tissue. Overall,
these data contain more than 100 features. Unfortunately, the majority of these
features are imbalanced in distribution, making the process of dataset creation
challenging when taking those features into account.

3 Methodology

3.1 Discovering Spurious Correlations

In typical machine learning studies, the data are split into training, testing, and
validation subsets randomly in order to prevent spurious correlations from arising
(see Figure 2a). Then, the training set is used to optimize the model parameters,
the validation set to tune hyperparameters and guide model selection, and the
testing set to serve as a final evaluation metric for generalization on new data.

Different than the aforementioned approach, in this study, we aim to find fea-
tures that spuriously correlate with predictive labels and create a well-documented
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Fig. 2: Illustration of the dataset creation process for discovering spurious correla-
tions. (a) A typical patient-based random sampling approach, where the dataset
is split into training, validation, and test sets to prevent overlap and ensure
unbiased evaluations. (b) A modified sampling strategy where specific spuri-
ous correlations between predictive labels (tumor-positive and tumor-negative)
and supplementary features (e.g., ethnicity) are deliberately introduced to study
their effects on model performance.

dataset containing clearly defined spurious correlations. To achieve this, we adopt
the approach detailed below.

Testing dataset. Before creating any training and validation datasets, we
randomly select 150 patients and use the tumor-positive and tumor-negative
slices from those images for the testing dataset. Throughout the manuscript,
we use this dataset to consistently measure the generalization performance of
trained models on unseen data and ensure that measurements on the test data
are easily comparable.

Training and validation datasets. Using the supplementary features de-
scribed in Section 2, we divide the training and validation data, at the patient
level, in a such way that the positive labels in both datasets are associated ex-
clusively with images possessing a specific property, while the negative labels
are linked to images with a different property. For example, using the ethnicity
feature, we select all tumor-positive images from Caucasian patients, whereas all
tumor-negative images are selected from Asian patients (see Fig. 2b). This setup
introduces a spurious correlation between ethnicity and the predictive label. If
the spurious correlation is strong enough, models may exploit it to achieve high
training and validation performance. However, their performance on the testing
dataset, evaluated on data without spurious correlations, will be significantly
lower.

3.2 Datasets and Evaluated Features

Using the approach outlined above, we create datasets based on a variety of
unique features in the supplementary data. However, a substantial challenge in
this process is data imbalance. For instance, only a small subset of patients in
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our dataset exhibit nipple retraction. Consequently, based on this feature, pa-
tients cannot be effectively split into training and validation sets to train DNNs,
as the sample size is insufficient for meaningful training. Another challenge is
missing data; a large number of features have a high proportion of missing labels,
rendering them impractical for use in dataset splits. Based on the available data,
we investigate more than 100 features but only report on several interesting and
relevant features due to space constraints:

Ethnicity. This feature describes the self-reported ethnic background of pa-
tients, such as Caucasian, Asian, or African American. Differences in represen-
tation across groups can introduce spurious correlations if ethnicity dispropor-
tionately aligns with specific labels.

Menopause status. This feature indicates a patient’s menopausal status
(e.g., premenopausal or postmenopausal), which affects breast tissue density.
Its link to age and demographics may unintentionally correlate with diagnostic
labels.

Magnetic field strength. The strength of the MRI scanner’s magnetic field,
measured in Tesla (e.g., 1.5T or 3T). Differences in field strength can affect image
quality and introduce unintended correlations with labels.

Surgery type. This feature describes the type of surgery that will be per-
formed on the patient (e.g., mastectomy or lumpectomy). Variability in surgical
decisions may correlate with disease characteristics, leading to potential biases.

Vertical alignment. Indicates whether an image was vertically flipped dur-
ing data augmentation. Uneven application of this transformation can create
unintended associations with specific labels.

Baseline performance. Apart from the dataset splits created based on the
aforementioned features, we also use three baseline performance datasets to eval-
uate the models on randomly sampled datasets without spurious correlations.
These datasets are sampled based on patient counts and represent low-data,
medium-data, and large-data benchmarks.

Details about these datasets, the number of images in the training, validation,
and testing datasets, as well as the number of patients containing information
regarding these features, are provided in Table 1.

3.3 Models

In the upcoming experiments, we use two models: a robust and widely adopted
convolutional model in the literature (ResNet-50) [6], and a transformer-based
architecture, Vision Transformer (ViT-B/16) [4], which has demonstrated state-
of-the-art performance in various computer vision tasks. All models are initial-
ized with pretrained weights from the ImageNet dataset [3], ensuring a strong
starting point for transfer learning. The pretrained weights for these models are
taken from the PyTorch library.
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Table 1: The table presents the number of patients and images allocated to
training, validation, and testing sets for different dataset configurations. The
baseline datasets (low, medium, and large) contain randomly sampled patient
data without spurious correlations, while the experimental datasets introduce
specific spurious correlations based on features such as ethnicity, menopause
status, MRI field strength, surgery type, and image alignments. The patient
counts and corresponding image counts are shown for each dataset category.

Feature Patients in dataset Images in dataset

Training Validation Testing Training Validation Testing

Baseline (Low-data) 150 150

150

6,490 8,032

6,788

Baseline (Medium-data) 400 150 19,252 8,032
Baseline (Large-data) 600 150 29,196 8,032

Ethnicity 200 100 4,974 2,408
Menopause 400 150 10,488 4,330
Field strength 400 150 9,562 3,576
Surgery type 400 150 7,860 2,916
Vertical alignment 500 150 24,138 6,926

4 Experimental Results

We train the models described in Section 3.3 using the datasets provided in
Table 1. To identify the best-performing model for each dataset, we conduct
a comprehensive grid search and train the models for 50 epochs using three
optimization algorithms: Stochastic Gradient Descent (SGD), Adam [13], and
AdamW [17]. The initial learning rates are set to 10{−5,−4,−3,−2}. For SGD, we
adopt a cosine annealing learning rate schedule, following the approach of [1].
Additionally, we experiment with weight decays of 10−4, 10−5, and 0. All models
are trained with a batch size of 32, and the models achieving the highest accuracy
on the validation set are selected as the final models.

The experimental results, summarized in Table 2 provide a comprehensive
evaluation of model performance across different dataset configurations. We re-
port accuracy (Acc.), positive predictive value (PPV), and negative predictive
value (NPV) for training, validation, and testing datasets. The baseline datasets
without spurious correlations serve as a reference point, while the experimen-
tal datasets, which include spurious features, allow us to assess the impact of
spurious correlations on model generalization.

Consistent results with baseline datasets. The baseline datasets show
minimal performance degradation from validation to testing, with stable accu-
racy and predictive values across different dataset sizes. This consistency sug-
gests that DNNs generalize well to unseen data when no spurious correlations
are present, reinforcing the dataset’s validity.

Weak or no spurious correlations. While models trained on datasets con-
taining spurious correlations on ethnicity, menopause status, and surgery type
show some decline in testing accuracy, the impact is not severe. The test ac-
curacy for these features remains above 70%, indicating that although spurious
correlations influence model predictions, their effect is not as dominant.
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Table 2: Accuracy (Acc.), positive predictive value (PPV), and negative predic-
tive value (NPV) for ResNet-50 and Vit-B models across training, validation,
and testing datasets are provided, considering various experimental conditions,
including randomized baseline data, demographic factors, and data augmenta-
tion techniques.

Training Validation Testing

Feature Model Acc. PPV NPV Acc. PPV NPV Acc. PPV NPV

Baseline
(Low-data)

ResNet-50 0.77 0.69 0.84 0.71 0.76 0.66 0.77 0.78 0.75
Vit-B 0.79 0.74 0.85 0.75 0.70 0.80 0.79 0.70 0.88

Baseline
(Medium-data)

ResNet-50 0.76 0.66 0.86 0.75 0.77 0.73 0.77 0.77 0.77
Vit-B 0.79 0.72 0.86 0.76 0.67 0.86 0.81 0.69 0.94

Baseline
(Large-data)

ResNet-50 0.80 0.74 0.86 0.76 0.76 0.77 0.82 0.78 0.86
Vit-B 0.81 0.75 0.87 0.79 0.71 0.87 0.83 0.72 0.94

Ethnicity ResNet-50 0.97 0.96 0.97 0.85 0.89 0.81 0.72 0.75 0.68
Vit-B 0.83 0.81 0.86 0.81 0.77 0.85 0.71 0.65 0.77

Magnetic
Field Strength

ResNet-50 0.99 0.98 0.99 0.99 1.00 0.98 0.52 0.62 0.41
Vit-B 0.98 0.98 0.98 0.99 0.99 0.99 0.55 0.66 0.43

Menopause ResNet-50 0.91 0.91 0.92 0.85 0.88 0.82 0.71 0.77 0.65
Vit-B 0.67 0.63 0.72 0.71 0.62 0.80 0.69 0.62 0.75

Surgery Type ResNet-50 0.53 0.49 0.57 0.70 0.79 0.61 0.74 0.80 0.68
Vit-B 0.80 0.73 0.87 0.75 0.63 0.87 0.77 0.66 0.88

Vertical
Alignment

ResNet-50 0.99 0.99 0.99 1.00 1.00 1.00 0.52 0.04 1.00
Vit-B 0.98 0.98 0.98 1.00 1.00 1.00 0.52 0.05 1.00

Strong spurious correlations. Models trained on datasets where magnetic
field strength and vertical alignment are spuriously correlated with the target
labels achieve near-perfect accuracy during training and validation but suffer a
substantial drop in test performance, with accuracy declining to around 50%.
This sharp decrease indicates that models are heavily relying on these non-
clinical attributes for decision-making rather than learning meaningful medical
features. In the case of magnetic field strength, the model labels all 1.5T images
as tumor-positive and all 3T images as tumor-negative, while for vertical align-
ment, images facing up are predicted as tumor-positive and those facing down as
tumor-negative. This confirms that the model learns to exploit these non-clinical
cues as shortcuts, failing to generalize when tested on unbiased data.

Confirming strong spurious correlations. Based on the initial set of
experiments provided above, we identify magnetic field strength and vertical
alignment as the two features that, when spuriously correlated with image la-
bels, lead models to learn these spurious signals instead of clinically meaningful
features. To confirm these observations and ensure that the results presented in
Table 2 are not merely one-off outcomes based on dataset sampling, we repeat
the same experiment 10 times with different randomized patients in the training,
validation, and testing datasets. In all of those experiments, we find that vali-
dation accuracy reaches ∼ 100% at first few epochs while test accuracy remains
∼ 50%.
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(a) MRIs from 1.5 Tesla device (b) MRIs from 3 Tesla device

Fig. 3: Example breast MRI images obtained using (a) 1.5T and (b) 3T devices.

4.1 Understanding Spurious Correlations

Magnetic field strength. 3T scanners offer higher magnetic field strength,
improving signal-to-noise ratio (SNR) and image resolution for sharper, more
detailed images [24]. However, they are more prone to artifacts, heating effects,
and signal loss, especially around metal implants [5]. As such, our proposed
dataset involving this spurious signal features a non-local spurious signal that
influences the entire image rather than a localized region. An example set of
images obtained from 1.5T and 3T devices are provided in Figure 3, showing
that it is visually not possible to distinguish 1.5T MRIs from the 3T ones.

Vertical orientation. Different from magnetic field strength, which affects
the entire image globally, vertical orientation is a local feature that only alters
the spatial arrangement of structures within the image. This transformation does
not modify the underlying tissue characteristics or signal properties but instead
introduces artificial correlations that models may exploit as shortcuts.

5 Conclusions and Future Perspectives

We introduce SpurBreast, a curated dataset designed to study the impact of
spurious correlations in breast MRI classification. It includes two experimental
datasets with specific biases to evaluate model robustness. The first dataset in-
troduces a spurious correlation with MRI magnetic field strength and the second
dataset introduces spurious correlations based on vertical alignment. In addition
to these datasets with spurious correlations, we provide a baseline dataset free of
spurious correlations, serving as a benchmark for unbiased evaluation and bias
mitigation.

Our goal in providing datasets with spurious correlations is to enable re-
searchers to investigate how models learn and rely on unintended features, mea-
sure uncertainty, and develop methods to improve model generalization. Models
and datasets are available at github.com/utkuozbulak/spurbreast.
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