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Abstract. Accurate abnormal region detection in medical images is crit-
ical for early diagnosis. Unlike supervised and self-supervised methods,
unsupervised methods require no annotated training data and generalize
well to unseen abnormalities. Such advantages are achieved by detect-
ing abnormal regions from the differences between an input image and
a generated pseudo-normal image, which is similar to the input image
but excludes abnormal regions. However, existing unsupervised methods
often suffer from high false positive rate at test time due to poor pixel-
level matching between the normal regions of the input image and the
pseudo-normal image. To address this challenge, we propose MatchGen,
a novel plug-and-play framework to enhance the detection performance
of existing unsupervised methods by optimizing the pseudo-normal im-
age at test time. This generates an optimized pseudo-normal image that
accurately matches the normal regions of the input while maintaining
a clear distinction from the abnormal regions, which significantly im-
proves the detection performance. Extensive experiments on four real-
world datasets demonstrate the outstanding effectiveness of MatchGen.

Keywords: Abnormal region detection · Test time optimization · Med-
ical image analysis

1 Introduction

Detecting abnormal regions in medical images is crucial for early diagnosis and
effective treatment. For example, detecting brain tumors in MRI scans enables
timely interventions that significantly improve patient outcomes [24]. Identify-
ing abnormalities in retinal images also plays a key role in diagnosing diabetes
and diabetic retinopathy [19]. Given the importance of these real-world applica-
tions, many effective methods have been developed to detect abnormal regions
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Fig. 1: An example showing: a) the process of the existing unsupervised methods
(see red arrows); b) the result when overly optimizing the loss L(z) in Equa-
tion (1) (see blue arrows); and c) the process of MatchGen (see green arrows).

in medical images. Existing methods are broadly categorized into three groups:
supervised, self-supervised, and unsupervised methods.

Supervised methods [3] require large training datasets of annotated medical
images, with abnormal regions manually labeled by human experts. Obtaining
such annotations is expensive and the trained models often cannot generalize
well to unseen abnormal regions that differ from the training data [5].

Self-supervised methods [25,26,23,16] aim to eliminate the need for costly hu-
man annotations by training models with synthetic abnormal images. However,
the discrepancy between synthetic and real abnormal images often causes poor
generalization of the models on real-world medical images.

Unsupervised methods [5,32,12,33,17,29,18] address the limitations of super-
vised and self-supervised methods, because they do not require annotated ab-
normal images or synthetic abnormal regions for training. Instead, they detect
abnormal regions by identifying deviations from normal regions. This is achieved
by training a generative model, such as autoencoders [8,5,32], GANs [22,28], and
diffusion models [6,18,30,7,29], on normal images without any annotated regions.
Denote by ϕ(·) and g(·) the encoder (or forward diffusion) and decoder (or re-
verse diffusion), respectively, of the generative model trained on normal images.
The path of red arrows in Figure 1 shows the process of the existing unsupervised
methods. We illustrate this in Example 1.

Example 1. Given an input image x, the goal is to detect its abnormal regions.
First, x is encoded as an embedding zo = ϕ(x), which is then decoded into a
pseudo-normal image so = g(zo). Since ϕ(x) and g(z) are only trained to gener-
ate normal images, zo often belongs to the distribution of normal embeddings,
which ensures that so retains normal regions of x while omitting abnormal re-
gions [5,32]. Thus, the difference map Do = abs(x − so), which is the absolute
pixel-level difference between x and so, assigns larger values to the abnormal
pixels in x. Finally, a binary mask mo(x) = hτ (Do) is obtained by detecting the
pixels in Do with values above a threshold τ as abnormal pixels.
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Most existing unsupervised methods [5,6,32,12,33,17,29] detect abnormal re-
gions by the process in Example 1. Their primary distinction lies in how to
generate the pseudo-normal image. The quality of the pseudo-normal image so,
in terms of how well it matches the normal regions and distinguishes the abnor-
mal regions in x, is crucial to the overall detection performance.

Unfortunately, the so generated at test time by the existing unsupervised
methods [5,6,12,18,32,29] often fails to accurately match the normal regions in
x. While some methods [5,12] attempt to minimize the pixel-level difference
between the generated image and the input image at training time, that is, when
training ϕ(x) and g(z) on normal images, the so generated at test time still fails
to accurately match the normal regions in x since their pixel-level difference is not
explicitly minimized at test time. [10] attempts to address this mismatch issue
at test time, however it does not explicitly minimize the pixel-level difference
either; instead, it uses a normative prior that is specific to models trained with
the Evidence Lower BOund (ELBO), which limits its applicability to a broader
class of generative models. As a result, existing methods [5,10,18,32,29] often
suffer from high false positive rate, because many normal pixels are mistakenly
flagged as abnormal in the difference map Do = abs(x− so).

To the best of our knowledge, accurately matching the normal regions in x
when generating so at test time is a challenging task because the normal and
abnormal regions in x are unknown at test time, which makes it difficult to
explicitly minimize the pixel-level difference between the normal regions of so
and x.

In this paper, we tackle the above task by designing a novel plug-and-play
framework named MatchGen to enhance the detection performance of existing
unsupervised methods. The key idea is to optimize the pseudo-normal image at
test time, such that it retains high pixel-level similarity to the normal regions of
the input image while maintaining a clear distinction from abnormalities. This
enables MatchGen to effectively reduce false positive rate while ensuring high
detection accuracy for abnormal regions. We make the following contributions:

First, we propose a loss function to minimize the pixel-level difference be-
tween the pseudo-normal image and the input image at test time. This improves
the pixel-level matching between the pseudo-normal image and the input image,
which significantly reduces the false positive rate.

Second, to prevent the pseudo-normal image from overfitting the abnormal
regions in the input image, we introduce a novel constraint to restrict the min-
imization of the loss function when generating the pseudo-normal image. This
ensures the pseudo-normal image resembles a realistic normal image that re-
mains clearly distinguishable from the abnormal regions in the input image,
which improves the detection accuracy of abnormal regions.

Last, we conducted extensive experiments on seven unsupervised methods
and four real-world medical image datasets to demonstrate the effectiveness
of MatchGen in enhancing the detection performance of existing unsupervised
methods. We also performed a case study to visually analyze MatchGen’s out-
standing effectiveness.



4 X. Ma et al.

2 Task and Methodology

2.1 Task Definition

Given the trained encoder ϕ(x) and decoder g(z) of an existing unsupervised
abnormal region detection method, the goal of our task is to enhance the de-
tection performance by optimizing the pseudo-normal image at test time. We
adopt the same unsupervised setting as the existing unsupervised methods in
the literature [5,32,30], that is: 1) no training images with annotated abnormal
regions are used to train the abnormal region detection model; 2) a set of normal
medical images, denoted by Q, is used to train a generative model that captures
the distribution of normal medical images; and 3) a small set of validation images
with annotated abnormal regions is used to select hyper-parameter values.

2.2 Problem Formulation and Solution

We tackle the above task by proposing a general framework named MatchGen to
boost the detection performance of existing unsupervised approaches [5,12,30,2].
The key idea of MatchGen is to generate an optimized pseudo-normal image,
denoted by s∗, which is optimized at test time to accurately match the normal
regions in x while maintaining a clear distinction from the abnormal regions in
x. Following this idea, we formulate the problem to generate s∗ as a constrained
optimization problem:

min
z

∥x− g(z)∥1 s.t. ∥z − zo∥2 ≤ ϵ, (1)

where ∥ · ∥1 and ∥ · ∥2 are L1-norm and L2-norm, respectively, x is the input
image, g(z) is the decoder trained together with the encoder ϕ(x) on Q, z is
an embedding used as the input for g(z) to generate the pseudo-normal image
s = g(z), and zo = ϕ(x) is the embedding derived from the input image x. Please
refer to Figure 1 and Example 1 for the meaning of the notations.

The loss function in Equation (1), denoted by L(z) = ∥x− g(z)∥1, is the L1-
norm of the difference map D = abs(x−s), where s = g(z) is the pseudo-normal
image.

Due to the intrinsic property of L1-norm to promote sparsity by encouraging
shrinkage of small values to zero [27], minimizing L(z) produces a sparse differ-
ence map D, which reduces the pixel-wise difference between the normal regions
of x and s. This enables s to accurately match the normal regions, which reduces
the false positive rate of abnormal region detection.

However, excessively minimizing L(z) without any constraint will lead to
poor detection performance. As shown by the blue arrow path in Figure 1, ex-
cessively minimizing L(z) reduces the pixel-wise difference in both the normal
regions and abnormal regions, thus the pseudo-normal image s′ closely resembles
both the normal and abnormal regions in x. This produces a poor difference map
D′ that fails to effectively detect the abnormal regions in x.

The cause of the poor detection performance when excessively minimizing
L(z) lies in the embedding space E. By empirically analyzing the embedding
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Algorithm 1 MatchGen
Require: The ϕ(x) and g(z) trained on Q, input image x, and thresholds ϵ and τ .
Ensure: A binary mask m(x) on x.
1: Compute zo = ϕ(x).
2: Obtain z∗ by solving the problem in Equation (1).
3: Compute optimized pseudo-normal image s∗ = g(z∗).
4: Compute difference map D∗ = abs(x− s∗).
5: Compute binary mask m∗(x) = hτ (D

∗) by thresholding D∗ with τ .
6: Return m(x)← m∗(x).

z′ that excessively minimizes L(z), we discovered that z′ is often distant from
zo. This means z′ is likely outside of the distribution of the normal embeddings
generated by the encoder ϕ(x). Thus, even though ϕ(x) and g(z) are only trained
on normal images, g(z′) still generates an abnormal image from z′.

To avoid excessively minimizing L(z), we introduce the constraint ∥z−zo∥2 ≤
ϵ in Equation (1), which restricts the feasible search space of z∗ to the ϵ-
neighborhood of zo = ϕ(x). As shown by the path of green arrows in Figure 1,
keeping ϵ small heuristically ensures that the ϵ-neighborhood centered at zo is
in the distribution of the normal embeddings generated by ϕ(x).

This prevents s∗ = g(z∗) from drifting far from normal images, which helps
ensure s∗ to clearly distinguish itself from the abnormal regions in x. Conse-
quently, the difference map D∗ = abs(x−s∗) can effectively detect the abnormal
regions in x.

In summary, the optimized pseudo-normal image s∗ generated by MatchGen
at test time accurately matches the normal regions in x while maintaining a clear
distinction from the abnormal regions. This explains why MatchGen can achieve
a low false positive rate for normal regions while maintaining a high detection
accuracy for abnormal regions.

We solve the problem in Equation (1) by the penalty method [20], which
converts Equation (1) to the following unconstrained optimization problem:

min
z

∥x− g(z)∥1 + λmax (∥z − zo∥2 − ϵ, 0) , (2)

where the penalty parameter λ is initialized to be λ = 1, and it is gradually
increased in the optimization process until max (∥z − zo∥2 − ϵ, 0) = 0. This en-
sures the final solution z∗ is a feasible solution to Equation (1). Algorithm 1
concludes the whole process of MatchGen.

3 Experiments

Datasets. We use four public medical images datasets named BraTS2021 [4,1],
BTCV [15,1], RESC [11] and IDRiD [19,1]. For each dataset, we construct a
training dataset Dtrain of normal images, a validation dataset Dval of abnormal
images, and a testing dataset Dtest of abnormal images. The abnormal regions
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Table 1: The essential information of each dataset.
Datasets Modality Dtrain Dval Dtest Image Type Resolution# normal # abnormal # abnormal
BraTS2021 Brain MRI 4,500 100 400 grayscale 128×128×1

BTCV Liver CT 3,200 100 400 grayscale 512×512×1
RESC Retinal OCT 6,200 100 400 grayscale 256×256×1
IDRiD Fundus Images 7,000 100 400 color 128×128×3

of the abnormal images in Dval and Dtest are annotated at the pixel level. The
essential information of each dataset is reported in Table 1. We thank the original
authors for the excellent datasets.

Evaluation Metrics. We evaluate the detection performance by two classic
metrics, such as Dice score [5] denoted by Dice, and pixel-level average pre-
cision [18,21] denoted by APpix. Both metrics measure how well the detected
abnormal region aligns with the ground truth abnormal region. Larger values of
Dice and APpix indicate better performance. We compute the metric value on
each image in Dtest, and report the mean value across all the images in Dtest.

Baseline Methods and Base Models. Our baseline methods consist of
four self-supervised methods [16,25,26,23] and nine unsupervised methods catego-
rized as: the DDPM-based methods [30,7], the AE-based methods [5,14,32,33,12],
and the GAN-based methods [2,31]. We use each of the AE-based and GAN-
based methods as the base model to implement MatchGen. The DDPM-based
methods are not used as base models because their “decoder” g(z) operates as a
stochastic reverse-diffusion process, which prevents Algorithm 1 from effectively
passing gradients through g(z).

Implementation Details. For MatchGen built on different base models, we
used a learning rate of 10−3 with the Adam optimizer [13] to run Algorithm 1.
Our code is written in Pytorch 2.0.1 with CUDA 11.8. We use the original code
for the baseline methods released by their authors. Following the routine of exist-
ing unsupervised methods [5,17,32,9,12,30], for each compared method, we train
the generative models ϕ(x) and g(z) using Dtrain. For each compared method, we
tune the hyperparameters by a grid search on the annotated validation dataset
Dval. The hyperparameters that yield the highest Dice on Dval are selected for
evaluating the final detection performance on Dtest. The search scope for Match-
Gen is ϵ ∈ [0, 0.6] and τ ∈ [0, 1]. All experiments were conducted on an NVIDIA
4090 GPU. Our code is available at https://github.com/lele0007/MatchGen.

3.1 How Are the Detection Results?

The detection results are reported in Table 2, where the best results among all
methods are marked in red boxes. For each row of a base model, the immedi-
ately following row marked by “+MG” shows the results of MatchGen (MG)
implemented on the base model. We can draw the following conclusions from
the results in Table 2.

https://github.com/lele0007/MatchGen
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Table 2: The detection performance on Dtest. “+MG” means applying MatchGen.
Methods BraTS2021 BTCV RESC IDRiD

↑ Dice ↑ APpix ↑ Dice ↑ APpix ↑ Dice ↑ APpix ↑ Dice ↑ APpix

Self-
supervised
methods

CutPaste [16] 20.20 12.97 13.29 11.05 12.09 8.51 1.69 1.66
FPI [25] 16.03 10.82 14.40 12.79 10.25 6.64 6.57 5.71
PII [26] 23.41 14.47 15.24 13.76 10.98 7.71 15.29 5.99
NSA [23] 33.80 23.35 15.86 14.20 10.66 7.67 15.05 10.08

DDPM-bas
ed methods

AnoDDPM [30] 52.24 47.93 26.84 20.18 25.01 16.06 20.13 12.62
THOR [7] 53.42 51.44 22.71 18.31 27.25 17.18 15.52 8.72

AE-based
methods

AE-ℓ1 [5] 34.97 25.82 21.78 16.17 26.68 16.55 21.87 13.97
AE-ℓ1+MG 41.52 35.93 25.73 18.37 30.01 18.76 27.98 28.86
CeAE [33] 33.15 25.36 21.28 15.41 27.33 16.97 25.75 20.19
CeAE+MG 38.76 33.68 25.78 18.43 30.08 18.79 31.17 26.62
VAE [14] 38.75 29.29 22.02 16.74 26.20 15.97 29.46 23.27
VAE+MG 42.53 37.30 25.79 18.79 29.98 18.68 33.54 30.35
VAE-Grad [32] 37.10 33.98 22.24 16.20 27.81 16.98 26.53 20.46
VAE-Grad+MG 40.93 34.75 25.73 18.14 31.62 19.71 30.27 28.33
DAE [12] 60.12 54.50 26.59 21.69 26.14 16.17 15.24 8.94
DAE+MG 69.79 72.03 29.56 25.02 29.74 18.70 18.02 11.53

GAN-based
methods

GANomaly [2] 36.02 27.16 25.02 18.17 24.30 15.55 15.49 8.86
GANomaly+MG 42.79 36.15 28.01 20.82 29.72 18.45 19.09 10.63
DDGAN [31] 26.08 18.63 20.93 15.96 26.65 16.11 23.30 18.82
DDGAN+MG 39.26 35.00 25.72 18.12 30.26 18.64 27.54 25.01

First, the self-supervised methods is often inferior to the unsupervised meth-
ods. Because self-supervised methods train detection models on synthetic ab-
normal images that differ substantially from real abnormal images, thus their
generalization ability in detecting real abnormal regions is limited [21,9].

Second, MatchGen (MG) consistently outperforms its corresponding base
model, which demonstrates the effectiveness of MG in improving the detection
performance. In particular, MG achieves the largest performance gain over the
base model on BraTS2021 because its images contain less noise than the images
in the other datasets. This allows MG to generate higher-quality pseudo-normal
images that more accurately match the normal regions of the input images.

In summary, we can conclude from Table 2 that MatchGen effectively im-
proves the detection performance of its base models and the best detection results
in Table 2 are always achieved by MatchGen.

3.2 A Case Study to Visually Analyze Detection Results

In this section, we conduct a case study to visually analyze the detection results
of each base model and its upgraded version enhanced by MatchGen (MG). We
can draw the following conclusions from the results in Figure 2.

First, the base models exhibit large false positive areas marked blue in their
detection maps, indicating high false positive rates (FPR). This stems from
their test-time pseudo-normal images failing to accurately match normal regions
in the input, which leads to poor difference maps that misclassify normal pixels
as abnormal. Consequently, the high FPR limits the detection performance of
the base models.
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Fig. 2: The case study of detection results. The first column shows the input
image and its ground truth abnormal regions. The rest of the columns show two
columns per group, where the left column shows the results of a base model and
the right column (i.e., +MG) shows the results when applying MG to the base
model. In the detection map, the areas in red, blue, green, and black are true
positives, false positives, false negatives, and true negatives, respectively. The
green box marks the Dice scores of the detection maps.

Second, for each base model enhanced by MatchGen (denoted by “+MG”),
the false positive area marked blue in the detection map is reduced, indicat-
ing that MatchGen effectively lowers the FPR by minimizing L(z). Meanwhile,
the constraint ∥z − zo∥2 ≤ ϵ prevents the pseudo-normal image from overfitting
the abnormal regions, enabling effective abnormality detection. As a result, the
“+MG” models achieve higher Dice scores than their base versions, demonstrat-
ing MatchGen’s effectiveness in improving detection performance.

In summary, the case study in Figure 2 shows that MatchGen outperforms
the base models by reducing false positives through more accurate pixel-level
matching between the pseudo-normal and input images.

4 Conclusion and Future Work

In this work, we introduced MatchGen, a novel plug-and-play framework that sig-
nificantly enhances the performance of unsupervised abnormal region detection
methods while remaining practical for clinical deployment. MatchGen mitigates
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high false positive rates by optimizing a pseudo-normal image at test time to
closely match normal regions, with a constraint that prevents overfitting to ab-
normalities and preserves accurate detection. It is compatible with a broad range
of unsupervised methods based on differentiable encoder–decoder architectures.
The lightweight optimization of MatchGen processes each image in under 10 sec-
onds on an RTX 4090 GPU, which is practical for clinical diagnostic workflows.
Its per-image processing ensures low memory cost and enables parallelization
in batch-processing cases such as radiology departments and multi-clinic server-
client systems. Extensive experiments on four real-world medical image datasets
demonstrate its strong performance. In future work, we will extend MatchGen
to improve DDPM-based methods by guiding their reverse diffusion process.
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