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Abstract. Dynamic 3D Magnetic Resonance Imaging (MRI) is a pow-
erful imaging technique for motion monitoring and tracking, offering
both excellent soft-tissue contrast and the ability to capture dynamic
changes in tissue. Current reconstruction methods typically assume that
multiple spokes share the same motion state. However, this assump-
tion does not align with the complex realities of patient motion and
clinical acquisition protocols, often resulting in anatomical discontinu-
ities or blurring artifacts in the reconstructed images. In this work,
we propose an unsupervised Single-sPoke motion-compensated Implicit
NEural Representation method (SPINER) for dynamic volumetric MRI
reconstruction. We address a more challenging yet realistic scenario,
single-spoke motion modeling, which assigns a unique motion state for
each spoke measurement. To address this highly ill-posed inverse prob-
lem, we propose a motion-ignoring static initialization strategy that ex-
ploits static anatomical information across all spokes. We find that a
good initialization of the canonical volume significantly improves the op-
timization process and facilitates better dynamic volumetric reconstruc-
tion based on implicit neural representation learning. Experiments on
abdomen MRI datasets demonstrate that our methods can reconstruct
high-quality dynamic volumetric MRI while capturing continuous and
accurate motion.
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1 Introduction

Accurately reconstructing volumetric density and tissue motion is a fundamental
challenge in magnetic resonance imaging (MRI) [16]. However, the lengthy acqui-
sition time required for dynamic 3D MRI creates an inherent trade-off between
temporal and spatial resolution. This limitation makes it difficult to meet clini-
cal requirements for both rapid and precise imaging, particularly in applications
such as radiotherapy planning for moving tissues.

To tackle this challenge, many existing methods reconstruct image series by
grouping continuously acquired radial spokes into several motion states, either
through consecutive spoke grouping [22,6], window-shifting [15,21], or motion
signal-based sorting [5,7]. These approaches improve spatial resolution by as-
suming multiple spokes share a single motion state. However, this assumption
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fails to capture precise physiological motion, causing inaccurate motion signal
estimation and image blurring artifacts. Our work addresses a more challenging
scenario: single-spoke motion model (where “spoke” refers to a stack of spokes
from stack-of-stars golden-angle radial sampling) in dynamic 3D MRI reconstruc-
tion. By assigning each spoke its own motion state, we better reflect real-world
continuous motion. However, this modeling further exacerbates the inherently
ill-posedness of the inverse problem of dynamic MRI reconstruction by requiring
the recovery of instantaneous images from single-spoke k-space data.

In dynamic MRI reconstruction, motion-compensated methods [9,1,18,10] de-
compose dynamic images into a canonical (or template) volume and a sequence of
canonical-to-observation deformation vector fields (DVFs), which can effectively
constrain the solution space of the inverse problem. Recently, implicit neural
representation (INR) has demonstrated exceptional ability in representing spa-
tial and temporal scenes [19,17]. Some recent works [12,13] propose to integrate
INR with the motion-compensated methods by modeling both canonical volume
and DVFs as continuous functions parameterized by neural networks. INR pro-
vides memory-efficient representation with inherent regularization effects [14,20],
making it well-suited for underconstrained 4D reconstruction problems.

In this work, we proposed SPINER, which is, to the best of our knowledge, the
first single-spoke motion-compensated dynamic 3D MRI reconstruction method.
Different from existing methods, our formulation assigns a unique motion state
for each spoke measurement, leading to more continuous motion reconstruc-
tion and reduced artifacts compared with the spoke-sharing strategy from prior
works [22,6]. We adopt INR to represent both the canonical volume and DVFs
and jointly optimize the two INR models to fit all spoke measurements. However,
relying solely on the implicit learning bias of the INR cannot produce satisfac-
tory performance in this extremely ill-posed problem, where only one spoke is
available to reconstruct the 3D volume at each time point.

To address the issue, we propose a motion-ignoring static initialization strat-
egy. Specifically, the core idea is to initially disregard motion and exploit all
aggregated spoke measurements to reconstruct a motion-ignoring static volume.
This reconstructed static volume correctly captures low-frequency and static
anatomical information, while motion artifacts remain with blurry structural
details. This resulting volume is used to initialize the canonical INR network,
which is optimized along with the deformation fields. This initialization not only
provides low-frequency anatomical information to the canonical network but also
allows the DVF network to focus on extracting temporal changes. As the DVF
network captures the changes, blurring artifacts are reduced and the canonical
network gradually learns intricate details and high-frequency structures.

To evaluate the performance of SPINER, we conduct extensive experiments
on our in-house abdominal MRI datasets. The results demonstrate that our
method can reconstruct 3D volumes corresponding to each spoke measurement,
without suffering from motion blurs induced by spoke-sharing. Additionally, we
conduct ablation studies to evaluate the effectiveness of motion-ignoring static
initialization and single-spoke motion modeling.
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Fig. 1. Overview of the SPINER. (a) Motion-ignoring static initialization. The
network MΦ maps spatial coordinates (x, y, z) to the complex-value MRI image and
minimize the difference between predicted and acquired k-space, yielding Φ∗

init as a
powerful initialization for the canonical network. (b) Joint optimization canonical
and DVF network. The DVF network MΨ takes (x, y, z, t) and outputs the displace-
ment (∆x,∆y,∆z). These displacements transform the canonical coordinates, which
are then passed to the canonical network to obtain the volume at time t. We jointly
optimize both networks by minimizing the loss between predicted and acquired k-space
data at time t.

2 Method

2.1 Problem Formulation

The measurement process of dynamic volumetric MRI can be formulated as:

yt = PtFxt + nt, t = 0, . . . , T, (1)

where X = [x0, . . . ,xT ] denotes the dynamic 3D image, F denotes the Fourier
transform, Pt is the sampling pattern at t, and yt is the acquired k-space
data at time t. Recovering the dynamic 3D MRI X from the acquired k-space
signal {yt}Tt=0 is a highly ill-posed inverse problem. To address this, motion-
compensated methods [9,1,18,10] propose to model the 4D image X as a 3D
canonical volume m, supplemented by a sequential DVFs U = [u0, . . .uT ]. As
such, the measurement process of dynamic 3D MRI can be modeled as:

yt = PtF(ut ◦m) + nt, (2)

where xt = ut◦m represents the warped volume at time t. The canonical volume
m and the DVFs U can be recovered by solving the above inverse problem in
Eq. 2. Subsequently, the desired dynamic 3D images X are obtained by applying
the DVFs to the canonical volume (i.e., U ◦m).
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Existing methods [9,22] typically assume that continuously acquired spoke
lines share the same motion stage, which may not adequately capture the real-
world motion. To address this issue, we introduce a single-spoke motion model,
where a canonical-to-observation deformation is applied to every spoke.

2.2 Single-spoke Motion-compensated Dynamic 3D Reconstruction

Fig. 1 shows the pipeline of the proposed SPINER. First, we represent the canon-
ical volume m and DVFs U as neural implicit fields. However, reconstructing 3D
volume from single-spoke k-space data is extremely ill-posed. Thus, we propose
a motion-ignoring static initialization to capture static anatomical information
for constraining the solution space. After initializing the canonical network, we
jointly optimize the canonical volume and DVFs.

Neural Representations of Canonical Volume and DVFs. We represent
the 3D canonical volume as a function f of the spatial coordinates p to the
complex-valued MRI image:

f : p = (x, y, z) ∈ R3 → m(p) ∈ C, (3)

where m(p) is the intensity of the 3D canonical volume. The function f can be
learned with an MLP network MΦ (referred to as the canonical network). To
facilitate the representation of high-frequency signals, we use hash encoding [11]
to map the coordinates into a high-dimensional feature vector γ(p). We model
the 4D DVF U = [u0, . . .uT ] as a function g of spatiotemporal coordinates (p, t)
as follows:

g : (p, t) ∈ R4 → ut(p) = (∆x,∆y,∆z) ∈ R3, (4)

where (∆x,∆y,∆z) denotes the displacement on the spatial domain, correspond-
ing to the time t. We use an MLP network MΨ (referred to as the DVF network)
to fit g after mapping (p, t) into γ(p, t) via hash encoding [11].

Motion-ignoring Static Initialization. Although the single-spoke motion
model better approximates the realistic motion continuity, it further exacerbates
the ill-conditioning of this reconstruction problem. To constrain the search space
and stabilize optimization, we propose a motion-ignoring static initialization
strategy, as illustrated in the blue box of Fig. 1. Since all spokes redundantly
sample the static regions, we disregard motion and exploit all aggregated spoke
measurements to initialize the canonical network MΦ. Incorporating the forward
model of dynamic 3D MRI, we can learn the initialization by calculating the
relative ℓ2 loss between the predicted and acquired measurement data:

Φ∗
init = argmin

Φ
L (PFMΦ,Y) + λ · TV(MΦ), (5)

where Y = [y0, . . . ,yT ] denotes the acquired k-space at at all time and TV(·) is
the spatial total variation (TV) regularization. Due to the inherent learning bias
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of neural networks towards low-frequency signal patterns [14,20], the network
fully exploits the redundancy in static regions to represent a 3D volume with
high quality in those areas, even though motion artifacts may still be present in
dynamic regions. The learned parameters Φ∗

init serve as a powerful initialization
for the canonical network.

Jointly Optimization Canonical Volume and DVFs. After initializing the
canonical network, our goal is to jointly recover the canonical 3D volume m and
the 4D DVF U = [u0, . . .uT ] The content outside the box of Fig. 1 demonstrates
the optimization process. By passing the spatiotemporal coordinates (p, t) into
the DVF network MΨ, we obtain the displacement vector ut(p) = (∆x,∆y,∆z).
Applying these deformation fields to the canonical coordinates, we obtain the
transformed coordinates p′ = ut(p) ◦ p = (x′, y′, z′):

x′ = x+∆x, y′ = y +∆y, z′ = z +∆z. (6)

Benefiting from the inherent consistency bias of INR, we obtain the transformed
volume by passing p′ = (x′, y′, z′) to the canonical network MΦ. Finally, lever-
aging the dynamic 3D MRI forward model with the sample trajectory Pt at
time t, we jointly optimize the canonical and DVF network by calculating the
relative ℓ2 loss between the predicted and acquired k-space data at time t:

Φ∗,Ψ∗ = argmin
Φ,Ψ

L(PtFMΦ(MΨ ◦ p),yt) + α · TV(MΨ), (7)

where MΨ ◦ p = p′ denotes the transformed coordinates and TV(·) represents
the TV regularization applied to the estimated DVFs.

The joint optimization of Φ and Ψ introduces indeterminacy that makes
the problem more challenging. To overcome this issue, we use the optimized
parameters Φ∗

init of motion-ignoring static initialization learning as the good
initialization of the parameters Φ of the canonical network MΦ. As a result,
the canonical network leverages low-frequency spatial information to guide the
learning of the DVF network. The gradually learned DVFs further enables the
canonical network to reduce the motion artifacts and capture fine details. Finally,
the DVF network MΨ accurately estimates the motion transformation, while
the canonical network MΦ represents a high-quality canonical volume.

3 Experiments

3.1 Experiments Setup

Datasets and Pre-processing. Under an institutional review board-approved
protocol, two 10-min DCE-MRI scans were performed using a work-in-progress
golden-angle stack-of-stars spoiled gradient echo sequence [2,3] with fat suppres-
sion, yielding a total of 3500 radial stacks of spokes. We applied the hierarchical
motion modeling method [23] to determine the continuous respiratory position
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Fig. 2. Qualitative results of dynamic 3D MRI images reconstructed by the compared
methods. The first column shows the blue line profile over time. The other columns
show the reconstructed images at the time points corresponding to the orange points
on the ground truth profile. Orange dashed lines help visualize the motion changing.

for each stack of spokes and to jointly reconstruct image volumes via view shar-
ing across 21 breathing states. These volumes were then aligned to the exhale
position volume to yield DVFs. Each spoke’s DVF was derived by linearly in-
terpolating its respiratory position between the two bounding states in this 21-
state vector field. By applying these DVFs to the static volume, we generated
the ground truth 4D dynamic MRI. From these two ground truth 4D dynamic
MRI datasets, we extracted five subsets, each comprising 140 radial stacks of
spokes, for further simulation. We employed a golden-angle stack-of-stars sam-
pling pattern, acquiring only one stack of spoke per time-specific volume, with
spoke length = 448 and kz = 96.

Compared Methods and Metrics. We compare our method with NUFFT [8],
TD-DIP [22], and Naïve INR [4]. TD-DIP [22] is applied in a single-spoke set-
ting, while Naïve INR [4] is evaluated under both single-spoke and window-shift
conditions, using a window size of 20 (i.e., 20 spokes per time point). For the
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Table 1. Quantitative comparison of dynamic 3D images by all methods. The best
performance is highlighted in bold, and the second best is underlined.

NUFFT [8] TD-DIP [22] Naïve INR [4]
(single-spoke)

Naïve INR [4]
(20 spokes)

SPINER
(w/o Init.)

SPINER
(w/ Init.)

PSNR 10.64 23.83 19.16 27.13 32.59 38.99
SSIM 0.3309 0.6539 0.2113 0.7339 0.7564 0.9664

Motion-ignoring Static Initialization Final Canonical Volume

Exhale Inhale

(a) Conanical Volume

(b) DVF

Fig. 3. Qualitative results of canonical volumes and DVFs. (a) The canonical volume
of motion-ignoring initialization (left) and the canonical volume estimation after op-
timization (right). The volume is shown in three orthogonal views. (b) Illustration of
DVF (first column), canonical volume with quiver vectors indicating the DVF direction
(second column) and warped image (third column).

reconstructed MRI images, we employ peak signal-to-noise ratio (PSNR) and
structural similarity index (SSIM) as quantitative evaluation metrics.
Implementation Details. The canonical MLP network MΦ consists of five
FC layers with a width of 128, while the DVF network MΨ contains two FC
layers with a width of 32. The hyperparameter of TV regularization is set as
λ = 0.1 and α = 0.4.

3.2 Results

Comparisons of Dynamic 3D Image Reconstruction. Fig. 2 shows the
qualitative results of reconstruction. NUFFT appears as a projection at a spe-
cific angle due to the single-spoke motion model. Both TD-DIP and Naïve INR
capture the overall organ structure but lack finer details, with Naïve INR ex-
hibiting more noise. In contrast, our method reconstructs dynamic 3D MRI with
high spatiotemporal resolution. Regarding motion capture, the ground truth pro-
file line clearly shows a small-amplitude breathing cycle in the early time and a
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4D Dynamic Reconstruction Canonical Volume & DVF

w/o initialization w/ initialization GT w/ initializationw/o initialization

Fig. 4. Comparisons of SPINER with or without motion-ignoring static initialization.

larger-amplitude cycle later on. The profile lines of NUFFT and TD-DIP show
that they fail to accurately represent motion, while the profile line of Naïve
INR shows that it captures only the larger-amplitude motion. In contrast, our
approach precisely captures both types of motion, demonstrating superior per-
formance in dynamic imaging. Table 1 shows the quantitative results aligning
with the above qualitative comparisons.
Results of Learned Canonical Volume and DVFs. Fig. 3.(a) shows that
during the motion-ignoring static initialization, the INR network learns a vol-
ume with anatomical structures but also exhibits motion blurring, visible as
unclear boundaries. The subsequent optimization process progressively corrects
these motion artifacts, enabling the canonical network to ultimately represent
a high-quality static image free from motion-induced blurring. Fig. 3.(b) shows
the learned DVFs. For both the inhale and exhale phases, the resulting DVFs
are consistent with the expected organ movements, demonstrating our method
accurately capture respiratory motion.

3.3 Ablation Studies

Effectiveness of Motion-ignoring Static Initialization. Fig. 4 shows the
qualitative results with and without initialization. Without initialization, the
DVF network fails to capture the motion, causing the canonical network to
ultimately learn a volume with motion artifacts. This comparison demonstrates
that the motion-ignoring static initialization helps the DVF network focus on
capturing dynamics, and the learned DVF further enables the canonical network
to reduce motion artifacts.
Effectiveness of Single-spoke Motion Model. The third row of Fig. 2 (Naïve
INR with single-spoke) shows that Naïve INR can capture large motion in the
later phase, although the spatial resolution is low. In contrast, the fourth row of
Fig. 2 (Naïve INR with 20 spokes) shows that increasing the number of spokes
improves image quality but also causes blurring artifacts and makes motion less
discernible. These results demonstrate that the proposed single-spoke motion
model can effectively represent the real-world motion.
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4 Conclusion and Discussion

This work proposes SPINER, a novel single-spoke motion-compensated dynamic
3D reconstruction method. Unlike existing methods, SPINER introduces a single-
spoke motion model and addresses this highly ill-posed problem by proposing
the motion-ignoring static initialization strategy that exploits the redundancy
of static anatomical information across all spokes. Experimental results demon-
strate that SPINER reconstruct images with high spatiotemporal resolution
while accurately capturing motion. Despite the success of the current frame-
work, which only considers respiratory motion, it can be further extended to
reconstruct dynamic 3D MRI with more complex, composite motion.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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