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Abstract. Plane-wave ultrasound (PWUS) facilitates functional imaging through 

a high frame rate of a few thousand Hz. However, its application remains con-

strained due to the inferior B-mode image quality in comparison to conventional 

ultrasound imaging such as focused beam ultrasound (FBUS). In this paper, a 

data-driven approach is proposed through two steps to enhance the quality of 

PWUS images. In the first step, the unpaired neural Schrödinger bridge (UNSB) 

is employed to synthesize high-fidelity images that structurally correspond to the 

low-quality PWUS images. In the second step, our proposed model, R2B-WFC, 

is trained to reconstruct high-quality images from the PWUS radio frequency 

signals, incorporating a wavelet Fourier convolution (WFC) module. Multiple 

losses are also suggested, combining perceptual loss from a USNB pre-trained 

model and a Markovian discriminator to preserve high-frequency detail more ef-

fectively. As a result, Fréchet Inception Distance (FID), Kernel Inception Dis-

tance (KID), Learned Perceptual Image Patch Similarity (LPIPS), Feature Simi-

larity Index Measure (FSIM), Signal to noise ratio (SNR), and Contrast Ratio 

(CR) scores were 136.32, 0.0356, 0.1956, 0.9514, 41.18 dB, and 27.48 dB, re-

spectively. Compared to image-to-image translation methods, R2B-WFC from 

RF signal-to-image also shows faster inference time.  
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1 Introduction 

Ultrasound (US) imaging is a widely employed modality within the medical field, ow-

ing to its real-time performance, non-invasive approach, and cost-effectiveness. The 

ability to attain high frame rates has led to significant interest in plane wave ultrasound 

(PWUS) for functional imaging applications [1, 2]. The lower B-mode image quality 

of PWUS, resulting from its lower intensity than that of focused beam ultrasound 

(FBUS), restricts its clinical applicability [3]. Consequently, PWUS studies have been 

predominantly implemented in preclinical studies [4].  

The advent of deep learning has prompted recent studies to enhance PWUS images 

from radio frequency (RF) signal. The studies demonstrated that data-driven ap-

proaches yielded superior US images in comparison to rule-based methodologies, such 

as the delay-and-sum (DAS) beamformer. Luijten et al. [5] replaced adaptive beam-

former with a neural network with computational efficiency. Zhang et al. [6] proposed 

a neural network based on sparse regularization method with shorter reconstruction 

time. Lu et al. [7] showed a complex convolution neural network based on in-phase and 

quadrature components of RF signal.  

Moreover, deep learning modules that learn features at the frequency level have re-

cently gained attention. Fourier transforms allow the development of deep learning 

models to have non-local receptive fields by leveraging features that are obtained 

through spectral transformation [8, 9]. Fast Fourier Convolution (FFC) enable extract-

ing local and global features through convolution and spectral transform [10, 11]. 

Wavelet transforms have also been employed to capture multiscale information in fre-

quency domain [12, 13]. 

Our study proposes a data-centric US reconstruction method comprising two steps. 

In step 1, the unpaired neural Schrödinger bridge (UNSB) [14] is employed to synthe-

size high-fidelity images that maintain structural alignment with the low resolution of 

PWUS scans. A simple approach for enhancing image quality from RF signals is to 

train a deep learning model with high-fidelity synthesized images serving as the gold 

standard. However, it is inherently challenging to obtain structurally matched pairs of 

high-quality FBUS and low-quality PWUS images. To overcome the issue, we utilize 

the UNSB to synthesize high-fidelity images that structurally correspond to the low-

quality PWUS images. In step 2, the proposed model is designed to reconstruct images 

of high quality from RF signals of PWUS. The model, which is referred to as R2B-

WFC, uses wavelet Fourier convolution (WFC) modulation, which includes wavelet 

transform convolution and FFC, to convert the RF signals suitably into the B-mode 

images. It is demonstrated that R2B-WFC effectively facilitates the model’s capacity 

to capture high-frequency characteristics in the synthesized images, accomplished 

through multiple losses. The losses encompass perceptual loss, Markovian discrimina-

tor loss, and reconstruction loss. Our proposed framework has the following contribu-

tions: 1) For the first time, we demonstrate that the whole process of conventional US 

reconstruction can be replaced by a single deep learning model, 2) R2B-WFC and mul-

tiple losses effectively transforms RF signals into images, 3) Compared to image to 

image translation, our model not only qualitatively and quantitatively improves the im-

age quality, but also reduces the inference time.  
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2 Proposed Framework 

The methodology in this study involves two distinct steps for the training of our model 

that reconstructs B-mode images from RF signals. As the first step, we synthesize high-

fidelity images that structurally paired to low-quality PWUS images. At the second 

step, our proposed model, R2B-WFC, is trained to reconstruct the high-fidelity synthe-

sized images from PWUS RF signals with multiple losses (Fig. 1). 

 

2.1 Step 1: Image-to-Image translation for the high-fidelity Images 

We synthesize the high-fidelity images from the low-quality PWUS images. Low-qual-

ity PWUS and high-quality FBUS images are obtained from the Verasonics device and 

GE, respectively. It is challenging to obtain paired ultrasound (US) images from two 

different devices because US devices can dynamically capture the motion of objects 

such as the heart or blood vessels through real-time acquisition. Therefore, we employ 

UNSB model—which is based on diffusion Schrödinger bridge model [15] — to trans-

form the style of PWUS images into the FBUS style (Fig. 1). 

 

 

Fig. 1. Overview of our proposed training process. 

2.2 Step 2: RF-to-Image reconstruction 

We designed R2B-WFC model to reconstruct B-mode images from RF signals. High-

fidelity images that are structurally matched with the low-quality PWUS images are 

synthesized in step 1 and served as the gold standard target 𝑆𝐺𝑃𝑊 for training in step 2. 
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 Multiple Loss: R2B-WFC adopts multiple losses for training (Fig. 1). First, 𝐿𝑅𝑒𝑐  is 

defined as L1 loss between the synthesized gold standard 𝑆𝐺𝑃𝑊  and 𝑌𝑃𝑊 , a recon-

structed B-mode image from the RF signal. 

 𝐿𝑅𝑒𝑐(𝑌𝑃𝑊 , 𝑆𝐺𝑃𝑊) = |𝑌𝑃𝑊 − 𝑆𝐺𝑃𝑊| (1) 

Second, we incorporate Markovian discriminator loss which evaluates images on patch-

by-patch basis. The localized evaluation allows for capturing and preserving fine details 

and textures—essentially, high-frequency information of B-mode images—ensuring 

sharp edges and intricate structures. While the discriminator 𝐷 maximizes the loss, our 

model R2B-WFC that serves as a generator minimizes the loss. Mamba [16] with the 

state space models (SSMs) is attached on the first layer of the discriminator to refine 

high-frequency and edge features. Considering a discriminator 𝐷 and the gold standard 

𝑆𝐺𝑃𝑊, Markovian discriminator loss is calculated as follows:  

𝐿𝐴𝑑𝑣(𝑋𝑅𝐹 , 𝑆𝐺𝑃𝑊) = min
𝑅2𝐵𝑊𝐹𝐶

max
𝐷

𝔼[log 𝐷(𝑆𝐺𝑃𝑊)] + 𝔼[log(1 − 𝐷(𝑅2𝐵𝑊𝐹𝐶(𝑋𝑅𝐹)))]

 (2) 

, where 𝑋𝑅𝐹 is input RF signal. Third, we add perceptual loss [17] to achieve the style 

of the high-fidelity synthesized images at feature level. Considering that the UNSB 

model can already synthesize high-quality FBUS images, it can be assumed that the 

pre-trained encoder of UNSB model embeds the style of the synthesized images. There-

fore, the perceptual loss 𝐿𝑃𝑒𝑟  is optimized by minimizing the difference between the 

features of reconstructed images 𝑌𝑃𝑊 and target 𝑆𝐺𝑃𝑊. The perceptual function ∅𝑗 ex-

tracts features from the j-th layer of the encoder. 

 𝐿𝑃𝑒𝑟(𝑌𝑃𝑊 , 𝑆𝐺𝑃𝑊) =
1

𝐶𝑗𝐻𝑗𝑊𝑗
‖∅𝑗(𝑌𝑃𝑊) − ∅𝑗(𝑆𝐺𝑃𝑊)‖

2

2
 (3) 

By setting 𝜆1 = 1, 𝜆2 = 1, and 𝜆3 = 1, the final objective function is defined by com-

bining the three losses as follows:  

 𝐿𝑡𝑜𝑡𝑎𝑙 = 𝜆1 ∗ 𝐿𝑅𝑒𝑐 + 𝜆2 ∗ 𝐿𝐴𝑑𝑣 + 𝜆3 ∗ 𝐿𝑃𝑒𝑟  (4) 

 

Fig. 2. WFC Module. FFT: Fast Fourier Transform, DWT: Discrete Wavelet Transform. 

WFC module: WFC module processes RF signals enabling the U-Net to effectively 

reconstruct B-mode image 𝑋𝐵 ∈ ℝ1×𝐻𝐵×𝑊𝐵 , where 𝐻𝐵 × 𝑊𝐵  is set to the cropped 

patch size 192×192. As a first step, WFC crops 11×1344×96 size of RF signal, 
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resulting in 𝑋𝑅𝐹 ∈ ℝ𝐶𝑅𝐹×𝐻𝑅𝐹×𝑊𝑅𝐹 . Second, convolution filters split 𝑋𝑅𝐹  into two 

branches 𝑋𝐹1, 𝑋𝐹2 ∈ ℝ
𝐶𝐹
2

×𝐻𝐵×𝑊𝑅𝐹  where 𝐶𝐹  is 16. The multiscale branch and global 

branch in the spectral domain utilize discrete wavelet transform (DWT) and fast Fourier 

transform (FFT), respectively. DWT conv is performed sequentially in the order of 

DWT, 1 × 1 convolution (𝐶𝑜𝑛𝑣), batch normalization (𝐵𝑁), 𝑅𝑒𝐿𝑈, and inverse DWT 

(Inv DWT). DWT decomposes 𝑋𝐹1 into four frequency sub-bands, low-low (𝑋𝐿𝐿), low-

high (𝑋𝐿𝐻), high-low (𝑋𝐻𝐿), and high-high (𝑋𝐻𝐻) band. 1 × 1 𝐶𝑜𝑛𝑣 learns interactions 

among the sub-bands, while suppressing noise and enhancing key features such as 

edges and textures. 

 𝐷𝑊𝑇(𝑋𝐹1) = [𝑋𝐿𝐿 ∥ 𝑋𝐿𝐻 ∥ 𝑋𝐻𝐿 ∥ 𝑋𝐻𝐻] ∈ ℝ2𝐶𝐹×
𝐻𝐵

2
×

𝑊𝑅𝐹
2  (5) 

 Inv 𝐷𝑊𝑇(𝑅𝑒𝐿𝑈(𝐵𝑁(𝐶𝑜𝑛𝑣1×1(𝐷𝑊𝑇(𝑋𝐹1)))) ) =  𝑋𝐷𝑊𝑇 ∈ ℝ
𝐶𝐹
2

×𝐻𝐵×𝑊𝑅𝐹  (6) 

FFT conv also follows a sequential process such as FFT, 𝐶𝑜𝑛𝑣, 𝐵𝑁, 𝑅𝑒𝐿𝑈, and inverse 

FFT ( Inv 𝐹𝐹𝑇 ). FFT produces real 𝑋𝑅 ∈ ℝ
𝐶𝐹
2

×
𝐻𝐵

2
×𝑊𝑅𝐹  and imaginary parts 𝑋𝐼 ∈

ℝ
𝐶𝐹
2

×
𝐻𝐵

2
×𝑊𝑅𝐹 , which are then concatenated to form 𝑋𝑅 ∥ 𝑋𝐼 ∈ ℝ𝐶𝐹×

𝐻𝐵
2

×𝑊𝑅𝐹 . 𝐶𝑜𝑛𝑣 ad-

justs frequency bands of 𝑋𝑅 ∥ 𝑋𝐼  which contains global information within a single 

value, acting as a filter to emphasize or suppress certain frequency components. 

 𝐹𝐹𝑇(𝑋𝐹2) = 𝑋𝑅 ∥ 𝑋𝐼 ∈ ℝ𝐶𝐹×
𝐻𝐵

2
×𝑊𝑅𝐹  (7) 

 Inv 𝐹𝐹𝑇(𝑅𝑒𝐿𝑈(𝐵𝑁(𝐶𝑜𝑛𝑣1×1(𝐹𝐹𝑇(𝑋𝐹2)))) ) =  𝑋𝐹𝐹𝑇 ∈ ℝ
𝐶𝐹
2

×𝐻𝐵×𝑊𝑅𝐹  (8) 

𝑋𝐷𝑊𝑇 and 𝑋𝐹𝐹𝑇  are respectively added to the feature map obtained from each branch’s 

3 × 3 𝐶𝑜𝑛𝑣 layer to make 𝑋𝐹1
′ , 𝑋𝐹2

′ ∈ ℝ
𝐶𝐹
2

×𝐻𝐵×𝑊𝑅𝐹 . 𝑋𝐹1
′  and 𝑋𝐹2

′  pass through another 

3 × 3 𝐶𝑜𝑛𝑣, which doubles the channel size to yield 𝐶𝐹. The two feature maps are then 

added to make 𝑋𝐹
′ . Finally, transposed convolution expands the width of 𝑋𝐹

′  to match 

the width of the B-mode image, ensuring that the shape ∈ ℝ𝐶𝐹×𝐻𝐵×𝑊𝐵  aligns with the 

width and height of the B-mode image. 

3 Experiments 

PWUS data was acquired using the Vantage 256 system (Verasonics Inc., Kirkland, 

WA, USA), which spatially compounded of 11 steered PWs (evenly spaced from -10o 

to 10o). FBUS data was obtained from GE Logiq Fortis (GE Healthcare Inc., Chicago, 

IL, USA). From 47 volunteers, we gathered a total of 517 FBUS in-vivo images, along 

with 517 PWUS images and their corresponding RF data (101 Musculoskeletal (MSK), 

262 carotids, and 154 thyroids). To quantitatively evaluate models on three anatomical 

regions, we used six metrics: Fréchet Inception Distance (FID) [18], Kernel Inception 

Distance (KID) [19], Learned Perceptual Image Patch Similarity (LPIPS) [20], Feature 

Similarity Index Measure (FSIM) [21], Contrast Ratio (CR), and Signal-to-Noise Ratio 

(SNR) [22].  
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3.1 Image-to-Image Results for high-fidelity Synthetized Images 

To synthesize high-fidelity images from PWUS images, we compared four models, in-

cluding CycleGAN [23], CUT [24], I2SB [25], and UNSB [14]. Qualitative results re-

vealed that hallucination artifacts appeared in the Carotid and MSK classes (Fig. 3). 

The occurrence of these artifacts was especially identified in both conventional GAN 

models, including CycleGAN and CUT. Also, I2SB struggled to accurately reproduce 

the structural characteristics of the PWUS images. In contrast, UNSB effectively pre-

served the structural integrity of the input PWUS images while generating high fidelity 

that closely resembled the FBUS images. In quantitative result, UNSB achieved the 

best results on all metrics (Table 1). 

 

 

Fig. 3. Qualitative comparison of Image-to-Image results. 

Table 1. Quantitative comparison of Image-to-Image translation results. 

Method FID↓ KIDx100↓ LPIPS↓ FSIM↑ CR dB ↑ SNR dB↑ 

PWUS 261.7638 22.5615 0.4035 0.9023 21.7583 27.4170 

CycleGAN [23] 192.4531 5.0668 0.2987 0.9077 20.0888 31.7068 

CUT [24] 180.6778 4.0367 0.3026 0.9060 21.4752 32.5420 

I2SB [25] 167.0595 6.7854 0.2676 0.9168 16.2576 28.3448 

USNB [14] 142.9922 1.4826 0.2594 0.9141 29.1455 41.8104 

 

3.2 RF-to-Image Reconstruction Results 

In this study, R2B-WFC was compared with other models that used a convolution ker-

nel to transform the shape of RF signals into the shape of B-mode images and passed 

through different networks including CycleGAN [23], CUT [24], I2SB [25], and UNSB 

[14]. 
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As illustrated in Fig. 4, other models, with the exception of R2B-WFC, were found to 

be inconsistent structures when compared to PWUS structures. In contrast, the R2B-

WFC with RF signal processing module demonstrated effective preservation of struc-

tural integrity and superior performance, as evidenced by the highest scores on all met-

rics (Table 2). Notably, compared to other models, R2B-WFC showed better CR and 

SNR performance, representing that R2B-WFC preserved structural and high-fre-

quency information well. The results indicated the difficulties inherent in directly con-

verting large-scale RF data into images, thereby demonstrating the limitations of im-

age-to-image translation models in the absence of RF signal processing techniques and 

appropriate loss functions. Furthermore, we conducted an ablation study on the impact 

of different module and loss combinations (Table 3). The WFC module for RF signal 

processing demonstrated consistent superiority over a simple convolution approach 

across all classes. It has been observed that the perceptual loss greatly leverages the 

Markovian discriminator. In addition, integrating the Mamba module into the discrim-

inator's first layer has been shown to enhance the interaction between the discriminator 

and our reconstruction model, thereby leading to better SNR and KID. 

 R2B-WFC achieved the most efficient inference time of 0.0439s, outperforming im-

age-to-image translation methods, with CycleGAN, CUT, I2SB, and UNSB achieving 

0.1587s, 0.0552s, 18.105s, and 0.3133s, respectively (Fig. 5). While image-to-image 

translation models require a substantial amount of time due to the cascade approach, 

which involves image-to-image translation after conventional US reconstruction, our 

model achieved faster reconstruction by adopting an end-to-end approach that directly 

transforms RF signals into images. The comprehensive improvement demonstrated that 

the R2B-WFC model enhanced spatiotemporal resolution, enabling faster image recon-

struction without sacrificing quality.  

Fig. 4. Visualization of RF-to-Image results for qualitative comparison. 
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Table 2. Quantitative comparison of RF-to-Image results. 

Method FID↓ KIDx100↓ LPIPS↓ FSIM↑ CR dB↑ SNR dB↑ 

PWUS 270.5772 25.6898 0.3313 0.9424 21.7583 27.4170 

CycleGAN [23] 205.1438 13.0466 0.3245 0.9015 4.3550 9.4933 

CUT [24] 175.4161 6.5089 0.2864 0.9108 10.9040 18.5863 

I2SB [25] 190.5750 9.6633 0.3496 0.8984 1.5929 11.1222 

USNB [14] 185.3808 8.0504 0.2752 0.9133 8.9938 14.5603 

R2B-WFC (Ours) 136.3188 3.5608 0.1956 0.9514 27.4825 41.1804 

Table 3. Ablation study on different modules and loss functions for R2B-WFC. Mamba: dis-

criminator with Mamba attached on the first layer of the network. 

   Carotid Thyroid MSK 

Module LPer LAdv KIDx100↓ SNR dB↑ KIDx100↓ SNR dB↑ KIDx100↓ SNR dB↑ 

Conv X X 33.0346 37.4833 28.5498 34.4838 21.1940 33.7593 

FFC X X 36.8563 41.1162 30.6652 37.7294 24.8195 34.8465 

WFC X X 29.2349 41.4304 22.9669 36.1288 17.6179 34.0249 

WFC O X 43.2559 38.3389 41.0451 31.7972 28.4508 35.6616 

WFC O Basic 8.5622 37.9219 7.5946 35.6677 6.4702 38.1800 

WFC O Mamba 3.4890 44.1852 2.9644 40.2674 4.2289 39.0886 

 

Fig. 5. Inference time comparison between the RF-to-Image method R2B-WFC and Image-to-

Image translation methods. 

4 Conclusion 

In this study, we proposed a data-centric US reconstruction from RF signal to B-mode 

images. Using the high-fidelity synthesized images from UNSB, the proposed model 

preserved structural information and matches the style of high-quality images. It was 

demonstrated that R2B-WFC model successfully transforms RF signals into image 
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features. In addition, multiple losses facilitated high-fidelity reconstruction by leverag-

ing shared representations across tasks such as Markovian discriminator loss, recon-

struction loss, and perceptual loss. Unlike image-to-image translation models that ap-

plied translation after conventional US reconstruction, our model enabled faster recon-

struction by directly converting RF signals into images through an end-to-end approach. 
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