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Abstract. Organ segmentation in Positron Emission Tomography (PET)
plays a vital role in cancer quantification. Low-dose PET (LDPET) pro-
vides a safer alternative by reducing radiation exposure. However, the in-
herent noise and blurred boundaries make organ segmentation more chal-
lenging. Additionally, existing PET organ segmentation methods rely on
co-registered Computed Tomography (CT) annotations, overlooking the
problem of modality mismatch. In this study, we propose LDOS, a novel
CT-free ultra-LDPET organ segmentation pipeline. Inspired by Masked
Autoencoders (MAE), we reinterpret LDPET as a naturally masked ver-
sion of Full-Dose PET (FDPET). LDOS adopts a simple yet effective
architecture: a shared encoder extracts generalized features, while task-
specific decoders independently refine outputs for denoising and segmen-
tation. By integrating CT-derived organ annotations into the denoising
process, LDOS improves anatomical boundary recognition and allevi-
ates the PET/CT misalignments. Experiments demonstrate that LDOS
achieves state-of-the-art performance with mean Dice scores of 73.11%
(18F-FDG) and 73.97% (68Ga-FAPI) across 18 organs in 5% dose PET.
Our code will be available at https://github.com/yezanting/LDOS.
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1 Introduction

Positron emission tomography (PET) is a powerful molecular imaging modality
that visualizes radiotracer distribution to reveal physiological processes. Low-

⋆ These authors contributed equally to this work.
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Fig. 1: (a) Misalignments between PET and CT caused by respiratory motion
(e.g., liver displacement). (b) Noise and blurred boundary artifacts in LDPET.

dose PET (LDPET) reduces radiation exposure and has demonstrated diagnos-
tic equivalence to Full-Dose PET (FDPET) [25, 26, 14, 4]. However, its clinical
adoption remains limited by the lack of robust quantitative tools in high-noise
settings. Accurate tracer uptake measurements in non-tumoral organs are criti-
cal for tumor quantification within Volumes of Interest (VOIs) [1, 15]. LDPET
organ segmentation offers a promising approach for tracer uptake assessment
and kinetic measurements [23, 27], yet it remains relatively understudied.

In this study, we summarize the challenges of LDPET organ segmentation:
(1) Data scarcity: Clinical FDPET dominance limits LDPET dataset availabil-
ity. (2) Annotation complexity: Low soft-tissue contrast in PET, worsened
in LDPET, makes organ annotation challenging. Existing PET organ segmen-
tation methods rely on co-registered Computed Tomography (CT) annotations,
overlooking the issue of modality mismatch (Fig. 1a). (3) Noise-induced am-
biguity: Blurred anatomical boundaries hinder accurate segmentation (Fig. 1b).

To address these challenges, we propose LDOS, a novel CT-free LDPET or-
gan segmentation pipeline via collaborating denoising and segmentation learn-
ing. Inspired by MAE [8], we reinterpret LDPET as a naturally masked version of
FDPET, where the denoising process inherently recovers organ-level semantics.
Recent studies have demonstrated that incorporating organ annotations into
LDPET denoising can improve FDPET reconstruction, highlighting the shared
semantic priors between denoising and segmentation tasks [11, 24, 5].

Unlike traditional MAE-based methods that depend on large-scale pretrain-
ing, LDOS employs self-denoising to reinforce organ-level semantic learning, re-
ducing the risks of overfitting and bias-learning in small-scale PET datasets [21,
16, 18]. From a technical perspective, LDOS uses a simple yet effective training
pipeline. A shared encoder extracts generalized features for both tasks, while
task-specific decoders independently refine outputs for denoising (supervised
by FDPET) and segmentation (supervised by CT annotations during training
only). By incorporating CT-derived organ annotations into the denoising pro-
cess, LDOS improves anatomical boundary recognition and mitigates PET/CT
misalignments.
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Fig. 2: Overview of LDOS. LDOS employs the shared encoder and independent
decoders for denoising and segmentation tasks.

2 Related Work

PET Organ Segmentation Existing PET segmentation methods primarily
focus on organs with high tracer uptake (e.g., tumors) in FDPET, while or-
gan segmentation in LDPET remains largely unexplored [20, 17, 2]. Furthermore,
PET organ segmentation methods rely on co-registered CT annotations, ignor-
ing modality mismatch [19, 22]. To address this gap, we propose LDOS, which
operates directly on noisy ultra-LDPET data. By incorporating CT-derived or-
gan annotations into the denoising process, LDOS improve anatomical boundary
recognition and mitigates PET/CT misalignments.

MAE in Medical Image Analysis MAE excels in natural images with large-
scale pretraining (e.g., ImageNet [6]). However, medical imaging lacks compara-
ble datasets, making pretraining on limited data prone to overfitting and bias [21,
16, 18]. Inspired by MAE, where masking removes random patches, we reinter-
pret LDPET as positional masking of FDPET, where low-dose acquisition inher-
ently “masks” high-frequency details. Instead of resource-intensive pretraining,
LDOS integrates denoising and segmentation into a single-stage collaborative
learning process, avoiding small-data pitfalls and ensuring anatomical consis-
tency.

3 Main Methodology

LDOS employs a simple yet effective training pipeline, which improves segmen-
tation accuracy by jointly reconstructing FDPET signals. As shown in Fig. 2, it
employs a shared encoder Eθ and two task-specific decoders Dϕ and Dψ.
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3.1 Model Architecture

Shared Encoder LDOS uses the nnU-Net backbone [9] with the ResEncL con-
figuration [10]. Inspired by MAE, LDOS employs the LDPET denoising process
to learn semantic latent representations. MAE uses the patch-level discretized
images as inputs [7]. In the medical imaging context, large-scale patch masking
leads to excessive information loss. The degradation in LDPET physically stems
from lower photon counts and consequent statistical noise. LDOS approximates
this effect as a pixel-level masking process, which facilitates the retention of core
information:

xi = ψ(Λri, k) (1)

where xi is the LDPET image, ri is the FDPET image, and Λr represents the
pixel-level discretization. The encoder processes the input xi to extract semantic
latent features:

F (xi) = E(ϑe;xi)⊙ ζ(xi) (2)

where F (xi) represents shared semantic features, E is the encoder, ϑe denotes
encoder parameters, ⊙ signifies dimensionality stacking, and ζ is the residual
connection. Unlike standard MAE approaches that focus on visible pixels, our
method models all pixels, providing comprehensive semantic representation.

Segmentation and Denoising Decoders The encoder output feeds into both
segmentation and denoising decoders, which share a consistent architecture. To
enhance feature learning, a deep supervision strategy is incorporated [9]:

P zfull−dose = Dd(ϑ
z
d;F (xi)) (3)

P zseg =
exp(Dc

s(ϑ
z
s;F (xi)))∑

C

exp(Dc
s(ϑ

z
s ;F (xi))

(4)

where P zfull−dose is the FDPET prediction at scale z, D is the decoder, and
ϑzd denotes the decoder parameters. Similarly, P zseg refers to the segmentation
prediction for the c-th class, with Dc

s being the decoder for class c and C the
total number of segmentation classes.

3.2 Training via Collaborative Denoising and Segmentation

To address PET/CT misalignments [12, 2], misalignment data augmentation [19]
is applied during training. This strategy mitigates label inconsistencies and im-
proves coordination between segmentation and denoising. The denoising decoder
is supervised by the loss function Lg:

Lg =
∑
Z

ωz
∣∣P zfull−dose − r

∣∣ (5)
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where Z is the total number of scales, ωz is the weight of scale z, and r is the
FDPET image. For segmentation, a combination of Dice and cross-entropy losses
is used:

Lce =
∑
Z

∑
C

υz
(
−yc logP zseg,c − (1− yc) log(1− P zseg,c)

)
(6)

Ldice =
∑
Z

υz

1−
2
∑
C

(yc · ρ(softmax(P zseg,c)))∑
C

yc + ρ(softmax(P zseg,c))

 (7)

Ls = Lce + Ldice (8)

where Lce is the cross-entropy loss, C is the total number of classes, υz is the
weight at scale z, yc is the ground truth for class c, ρ is one-hot embedding, and
P zseg,c is the segmentation prediction. The total loss function combines denoising
and segmentation losses:

Ltotal = φLg + λLs (9)

where φ = e−ℓE ; ℓ = 0.002, λ = 1, and E denotes the number of epochs. Initially,
denoising is emphasized to capture semantic features, and as training progresses,
the focus shifts to refine segmentation accuracy.

Table 1: Performance of the 18 organs segmentation results on the 18F-FDG
and 68Ga-FAPI datasets (5-fold cross validation). Dice, IoU, HD95, and ASD
are used to evaluate LDOS, and ‘±’ represents ‘mean ± standard deviation’.The
green and yellow highlights mean the highest and lowest segmentation results.

Organs
18F-FDG Dataset 68Ga-FAPI Dataset

Dice (%) IoU (%) HD95 (mm) ASD (mm) Dice (%) IoU (%) HD95 (mm) ASD (mm)

Spleen 76.28 ± 2.31 58.99 ± 3.50 13.56 ± 4.32 3.77 ± 1.16 69.37 ± 5.61 54.90 ± 5.85 17.67 ± 4.32 4.95 ± 0.88

Colon 62.22 ± 3.47 53.33 ± 4.94 32.35 ± 8.07 9.42 ± 2.54 44.76 ± 4.79 29.68 ± 1.61 42.99 ± 7.33 8.58 ± 2.14

Urinary Bladder 72.75 ± 7.64 58.61 ± 11.99 9.23 ± 5.87 3.65 ± 3.16 79.94 ± 2.99 66.15 ± 6.51 14.74 ± 8.06 3.50 ± 1.44

Sacrum 69.20 ± 4.18 57.84 ± 5.03 12.29 ± 2.72 3.92 ± 0.65 71.05 ± 4.97 53.55 ± 3.86 10.20 ± 2.56 2.92 ± 0.21

Vertebrae 77.38 ± 4.85 65.87 ± 2.19 10.06 ± 3.31 2.84 ± 0.96 72.10 ± 2.22 54.92 ± 0.78 11.06 ± 6.49 2.40 ± 0.13

Heart 81.06 ± 4.30 72.59 ± 5.35 12.11 ± 3.56 4.10 ± 2.07 82.51 ± 1.57 69.92 ± 1.59 10.97 ± 0.86 3.71 ± 0.46

Aorta 76.38 ± 3.18 59.63 ± 2.04 12.20 ± 2.84 4.34 ± 0.75 72.32 ± 4.66 58.12 ± 2.10 10.44 ± 1.85 2.91 ± 0.20

Clavicula 63.34 ± 5.09 54.53 ± 4.38 15.78 ± 7.34 5.57 ± 2.76 59.08 ± 5.49 40.95 ± 3.75 10.39 ± 3.09 2.85 ± 0.10

Femur 77.05 ± 2.46 66.71 ± 3.94 10.88 ± 4.34 3.38 ± 1.94 88.58 ± 1.67 79.91 ± 2.05 5.74 ± 1.40 2.53 ± 0.95

Hip 76.50 ± 4.00 65.70 ± 3.78 10.54 ± 6.84 3.77 ± 1.64 76.86 ± 2.08 62.75 ± 2.60 8.67 ± 2.00 2.70 ± 0.19

Autochthon 75.92 ± 2.06 63.69 ± 2.75 8.28 ± 4.34 3.16 ± 1.55 85.05 ± 3.70 74.08 ± 3.22 5.56 ± 0.61 2.07 ± 0.12

Kidney 75.61 ± 4.79 64.35 ± 3.97 14.35 ± 5.06 4.78 ± 1.62 75.81 ± 3.62 62.07 ± 3.47 11.03 ± 0.58 3.30 ± 0.28

Brain 94.63 ± 3.65 91.12 ± 2.39 4.58 ± 1.79 1.87 ± 0.68 95.64 ± 0.87 91.65 ± 0.70 4.57 ± 0.23 1.86 ± 0.15

Liver 86.52 ± 2.46 78.78 ± 3.57 14.82 ± 5.33 5.14 ± 2.25 85.19 ± 1.97 72.30 ± 3.48 19.80 ± 5.50 5.56 ± 1.38

Stomach 63.90 ± 8.16 52.76 ± 7.49 23.24 ± 12.56 7.59 ± 2.01 69.76 ± 8.80 57.94 ± 8.86 29.92 ± 11.75 7.50 ± 2.44

Pancreas 52.61 ± 2.33 40.64 ± 5.94 18.80 ± 7.66 5.45 ± 2.29 54.58 ± 5.50 30.58 ± 6.94 21.38 ± 1.94 4.67 ± 0.42

Lung 89.33 ± 0.80 84.72 ± 2.01 12.10 ± 2.48 4.21 ± 1.50 91.88 ± 1.74 84.55 ± 2.03 7.81 ± 0.70 2.57 ± 0.25

Esophagus 50.78 ± 2.14 37.89 ± 6.45 19.49 ± 9.56 7.32 ± 5.32 56.96 ± 2.44 41.51 ± 4.13 9.00 ± 1.74 2.33 ± 0.17

Mean 73.11 ± 1.02 62.65 ± 3.07 14.15 ± 2.04 4.68 ± 1.01 73.97 ± 2.26 60.31 ± 2.72 14.00 ± 2.17 3.72 ± 0.46
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Fig. 3: A sample of head and abdominal organs segmentation on the 18F-FDG.
For clarity, segmentation results for some organs are not displayed.

4 Experiment and Results

4.1 Datasets and Implementation Details

Excluding significant misalignments, we used 52 18F-FDG and 60 68Ga-FAPI
tracer scans acquired from Nanfang Hospital Southern Medical University on
a UIH uEXPLORER (Total-Body) PET/CT to validate LDOS. The sampling
times were set to 300 seconds (100% dose) for FDPET and 15 seconds (5%
dose) for ultra-LDPET. Each dataset included 18 segmented organs and was
split into training (80%), validation (10%), and testing (10%) subsets. Five-
fold cross-validation was performed separately per tracer. Notably, direct organ
annotation on PET images was challenging due to constraints in the clinical
workflow. Consequently, we utilized annotations from corresponding CT scans
as the gold standard, which were then manually refined. Once trained, our model
performs organ segmentation on PET images alone, without reliance on the CT
modality.

LDOS was implemented based on the nnU-Net and trained from scratch. We
trained 500 epoches. The patch size was 192× 192× 192, and the batch size was
2. Training was conducted on an NVIDIA GeForce RTX 4090 GPU with 24 GB
memory.

Table 2: Performance of the 18 organs segmentation results on real LDPET and
FDPET images. Dice (%) is used as the metric.

Metric
18F-FDG 68Ga-FAPI

FDPET LDPET LDOS FDPET LDPET LDOS

Dice 76.03 ± 3.61 68.03 ± 2.35 73.11 ± 1.02 74.65 ± 3.09 65.73 ± 2.79 73.97 ± 2.26

IoU 62.98 ± 4.01 50.77 ± 7.39 62.65 ± 3.07 63.68 ± 2.45 48.70 ± 8.31 60.31 ± 2.72

HD95 15.71 ± 3.50 21.05 ± 3.84 14.15 ± 2.04 11.03 ± 2.64 23.94 ± 5.33 14.00 ± 2.17

ASD 3.96 ± 1.67 6.88 ± 1.78 4.68 ± 1.01 3.12 ± 1.06 7.06 ± 2.00 3.72 ± 0.46



LDOS 7

Fig. 4: Performance comparison of selected organs across different methods on
the 18F-FDG (a) and 68Ga-FAPI (b) datasets. Dice (%) is used as the metric.

4.2 Multiorgan Segmentation Results

The segmentation performance of LDOS was evaluated using multiple metrics,
including Dice Similarity Coefficient (Dice), Intersection over Union (IoU), 95th
percentile Hausdorff distance (HD95), and Average Surface Distance (ASD). A
5-fold cross-validation was conducted on both datasets. The quantitative seg-
mentation results are shown in Table 1. The average Dice scores across the 18
organs were 73.11%±1.02% and 73.97%±2.26% for the 18F-FDG and 68Ga-FAPI
datasets, respectively. Additionally, the average HD95 were 14.15mm±2.04mm
and 14.00mm ± 2.17mm, demonstrating the robust segmentation capability of
LDOS at ultra-LPPET (5% dose).

LDOS was compared to the segmentation results of real LDPET and FDPET.
For a fair comparison, the same nnU-Net architecture was employed, excluding
the denoising decoder loss. As shown in Table 2 and Fig. 4, LDOS achieved
notable improvements in Dice scores, with 5.08% and 8.24% higher accuracy
than LDPET on the 18F-FDG and 68Ga-FAPI datasets, respectively. Moreover,
LDOS achieved segmentation accuracy comparable to or surpassing FDPET for
certain organs.

PET organ annotations for model training are derived from corresponding
CT images, as direct organ labeling on PET images is impractical. However,
achieving precise alignment of training is challenging due to inherent spatial
shifts. As illustrated in Fig. 3, LDOS mitigates the misalignments by seman-
tic feature learning of the self-denoising process, providing a novel solution to
improve ultra-LDPET organ segmentation.

4.3 Comparisons with Previous Results

As shown in Table 3, Fig. 4 and 5, LDOS outperformed the state-of-the-art meth-
ods. Pre-training methods based on MAE [21, 16] did not yield significant im-
provements. LDOS uses semantic features extracted during the denoising process
to achieve superior results. These findings are consistent with prior studies [21,
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Table 3: Performance comparison of different methods on the 18F-FDG and
68Ga-FAPI datasets. Dice (%) is used as the metric. The best performance is
highlighted in bold, and the suboptimal performance is underlined.

Method Pre-train Data 18F-FDG 68Ga-FAPI

Baseline (ResEncU) - 68.03± 2.35 65.73± 2.79

EM-Net [3] - 65.45± 5.11 62.77± 3.46

nnU-Net [9] - 67.58± 7.30 63.96± 4.15

AutopetIII 68.86± 3.61 64.86± 1.98

S3D (nnU-Net) [21] Our Datasets 70.35± 1.78 70.87± 2.35

AutopetIII and Our Datasets 70.03± 0.96 72.76± 2.36

- 67.39± 5.00 64.97± 6.27

AMAES (U-Net B) [16] BRAINS-45K 66.92± 3.76 64.68± 2.99

AutopetIII 68.45± 4.37 64.56± 3.89

AutopetIII and Our Datasets 71.01± 1.65 69.33± 1.24

LDOS - 73.11 ± 1.02 73.97 ± 2.26

Fig. 5: Visualization of segmentation results on the 18F-FDG dataset.

16, 18, 13], which indicate that pre-training on small-scale datasets provide lim-
ited advantages for medical imaging tasks.

4.4 Ablation Experiment

To evaluate the contribution of the proposed pipeline, we compared its against
LDPET and fake FDPET. As shown in Table 4, LDOS improved Dice scores
on both the 18F-FDG and 68Ga-FAPI datasets. Unlike fake FDPET, which
employed sequential denoising and segmentation, LDOS’s collaborative design
achieved superior results without complex denoising model training. LDOS re-
duces deployment costs while enhancing usability. Additionally, results from the
LDPET-LDOS/ow (omits the L1 loss weight attenuation strategy) indicates that
focusing on denoising semantic information during the early training stages and
prioritizing segmentation optimization in the later stages positively impacts the
model’s overall performance.
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Table 4: Ablation studies of LDOS. LDPET-LDOS/ow means LDOS without the
L1 loss weight attenuation strategy, and Fake-FDPET means that denoising and
segmentation are performed sequentially. The best performance is highlighted in
bold.

Method Dataset Dice (%) IoU (%) HD95 (mm) ASD (mm)

LDPET 18F-FDG 68.03± 2.35 50.77± 7.39 21.05± 3.84 6.88± 1.78

Fake-FDPET - 73.75 ± 3.02 61.46± 2.96 13.76 ± 3.05 5.35± 1.84

LDPET-LDOS/ow - 72.01± 4.00 61.01± 2.66 15.02± 2.59 5.72± 1.55

LDPET-LDOS - 73.11± 1.02 62.65 ± 3.07 14.15± 2.04 4.68 ± 1.01

LDPET 68Ga-FAPI 65.73± 2.79 48.70± 8.31 23.94± 5.33 7.06± 2.00

Fake-FDPET - 73.45± 3.01 61.05 ± 4.33 16.54± 3.20 4.07± 1.28

LDPET-LDOS/ow - 71.09± 3.71 57.97± 3.15 17.39± 2.69 3.88± 1.09

LDPET-LDOS - 73.97 ± 2.26 60.31± 2.72 14.00 ± 2.17 3.72 ± 0.46

5 Conclusion

Ultra-LDPET organ segmentation is critical for reliable tracer uptake assess-
ments and kinetic measurement, but remains largely unexplored. In this study,
we propose LDOS, a CT-free ultra-LDPET organ segmentation pipeline. LDOS
reinterprets LDPET as a naturally masked version of FDPET and extracts
semantic information through a self-denoising process. By incorporating CT-
derived organ annotations into the denoising process, LDOS improves anatom-
ical boundary recognition and mitigates PET/CT misalignments, providing a
novel solution for LDPET quantification analysis.
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