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Abstract. Microvascular obstruction (MVO) is a key prognostic fac-
tor in acute myocardial infarction, with affected patients experiencing
higher mortality rates. Currently, late gadolinium enhancement cardiac
magnetic resonance (CMR) is the gold standard for MVO identification.
However, it is unsuitable for patients with renal impairment, who make
up 20% of all patients. Recent studies have demonstrated the feasibility
of using non-contrast cine CMR to identify MVO. Despite this, exist-
ing methods struggle to effectively learn crucial motion features, as they
implicitly model motion dynamics while overlooking regional wall mo-
tion abnormalities, which are important for MVO identification. To this
end, we introduce a Dual Correlation-aware Mamba, which includes an
Adjacent Frame Correlation (AFC) module and a Diastolic Frame Cor-
relation (DFC) module to address these limitations. The AFC module
calculates the correlations through adjacent frames to explicitly model
the motion dynamics. The DFC module learns correlations between the
diastolic frame and others. Leveraging the diastolic frame as a reference,
this module highlights regional abnormalities and guides motion learning.
Experimental results demonstrate that our method outperforms compet-
ing methods, potentially providing a non-contrast tool for MVO identi-
fication. The code is available at https://github.com/code-koukai/Dual-
Correlation-Mamba.

Keywords: Cardiac Magnetic Resonance · Microvascular Obstruction ·
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1 Introduction

Acute myocardial infarction remains a leading cause of death worldwide [3]. Mi-
crovascular obstruction (MVO), a frequent complication, is strongly linked to
increased mortality and serves as a critical prognostic indicator [10]. Clinically,
identifying the presence of MVO is essential for initial risk stratification and
guiding treatment strategies [21]. Late gadolinium enhancement (LGE) cardiac
magnetic resonance (CMR) is the gold standard for MVO identification [1,19].
However, it is unsuitable for patients with renal impairment, who make up 20%
of cases [20]. Therefore, there is an increasing need for non-contrast MVO iden-
tification. Cine CMR, a non-contrast dynamic imaging technique, has emerged
as a promising alternative [5,7,16]. It captures motion throughout the cardiac
cycle, enabling the detection of regional wall motion abnormalities (RWMA) and
myocardial dysfunction associated with MVO [6]. These findings highlight the
potential of cine CMR for non-contrast MVO identification [8,28,29].

In cine CMR, MVO is not visible on a single frame due to the absence of
contrast agents, making it necessary to analyze motion across multiple frames
for its identification. Some studies have leveraged motion analysis in cine CMR
to assess myocardial function and pathology [11,14,17,23,24,26]. However, the
inherent complexity and small size of MVO motion complicate the analysis,
making identification more challenging. Yan et al. [27] demonstrate the feasibil-
ity of MVO identification in cine CMR by extracting spatiotemporal features.
However, this method implicitly models motion dynamics, failing to sufficiently
capture the motion feature. Furthermore, they overlook the RWMA induced by
MVO, which is crucial for MVO identification in cine CMR.

In this paper, we propose a Dual Correlation-aware Mamba (DCM), which
includes an Adjacent Frame Correlation (AFC) module and a Diastolic Frame
Correlation (DFC) module to address these issues. Our contributions lie in ex-
plicitly modeling motion dynamics while leveraging the diastolic frame as a ref-
erence to guide motion learning. Specifically, to explicitly model the motion
dynamics, the AFC module computes correlations between adjacent frames to
estimate pixel displacements. The features are enhanced by displacement esti-
mation and aggregated by a bidirectional temporal Mamba [9]. Inspired by the
important role of RWMA in MVO diagnosis [15,25], the DFC module designates
the diastolic frame as a reference, highlighting RWMA variations throughout the
cardiac cycle. It learns correlations between the diastolic frame and the other
frames and aggregates the motion information through a bidirectional spatial
Mamba. Experiments demonstrate that our proposed method enhances motion
feature extraction, leading to improved non-contrast MVO identification. The
key contributions of our work are as follows:

1. We introduce Dual Correlation-aware Mamba, a novel method for MVO
identification that explicitly models motion dynamics and guides motion
learning to enhance motion feature extraction in non-contrast cine CMR;

2. Our proposed method includes the Adjacent Frame Correlation module to
explicitly model the motion by computing correlations between adjacent
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(a) Overview of our framework

(b) Details of Adjacent Frame Correlation (AFC) module

(c) Details of Diastolic Frame Correlation (DFC) module

Fig. 1: The illustration of our method includes: (a) the overview of our frame-
work, (b) the details of the Adjacent Frame Correlation module, and (c) the
details of the Diastolic Frame Correlation module.

frames, and the Diastolic Frame Correlation module to guide motion learning
by learning correlations between the diastolic frame and the other frames;

3. Experiment results demonstrate that our method outperforms competing
methods, effectively enhancing motion feature extraction and offering a novel
non-contrast solution for MVO identification.

2 Method

We propose a novel framework for non-contrast MVO identification that com-
putes the correlations between adjacent frames and learns the correlations be-
tween the diastolic frame and others to enhance motion feature extraction using
non-contrast cine CMR. The model, illustrated in Fig. 1a, extracts features from
a cine sequence using three 3D CNN layers. These features are refined using Dual
Correlation-aware Mamba (DCM) blocks, each comprising an Adjacent Frame
Correlation (AFC) module and a Diastolic Frame Correlation (DFC) module, to
enhance motion extraction. The DFC module leverages the diastolic frame index
to locate the diastolic frame. Two DCM blocks and a downsampling layer form
a stage, with features processed through two sequential stages for progressive
learning. Finally, the features undergo average pooling and a classifier layer to
generate the prediction for the presence of MVO.
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(a) Offset Calculation module (b) Adjacent Correlation Calculation

Fig. 2: Details of (a) Offset Calculation module and (b) Adjacent Correlation Cal-
culation. Adjacent Correlation Calculation uniformly processes adjacent frame
pairs along the temporal dimension and stacks the results.

2.1 Dual Correlation-aware Mamba

MVO identification in cine CMR is challenging due to the induced complex mo-
tion and its small size. Existing methods implicitly model motion, leading to
inadequate motion extraction. They also overlooked the crucial RWMA associ-
ated with MVO. We propose a Dual Correlation-aware Mamba, which includes
an AFC module for explicit motion modeling and a DFC module to guide the
model’s motion learning on motion abnormalities to address these limitations.

The AFC module predicts displacement offsets between adjacent frames, ex-
plicitly modeling motion representation. The processed features are then passed
to the DFC module for enhanced motion learning. The DFC module utilizes the
diastolic frame as a global reference for the other frames, guiding the model’s
motion learning. Finally, the fused features are fed into an MLP, which performs
nonlinear transformation to further refine the overall feature representation. A
residual connection is applied after each module.

Adjacent Frame Correlation Module Existing methods implicitly model
motion in cine CMR while lacking dedicated mechanisms to focus on motion
learning, resulting in insufficient motion extraction. However, motion extraction
plays a crucial role in MVO identification. In light of this, we propose the AFC
module, which explicitly models cardiac motion by computing correlations be-
tween adjacent frames, enhancing the model’s motion extraction capabilities.

Fig. 1b illustrates the details of the AFC module. Given an input sequence
X ∈ RB×C×T×H×W (where B is the batch size, C the channels, T the time steps,
and H and W the height and width), we first feed it into the Offset Calculation
module, which is depicted in Fig. 2a. Specifically, we extract adjacent frame
pairs Xi and Xi+1 ∈ RB×C×H×W for each frame index i ∈ {1, . . . , T − 1}. For
each pair, we compute local adjacent correlations within a symmetric window
W = {(∆h,∆w) | ∆h,∆w ∈ [−r, r]}, as illustrated in Fig. 2b:

Corri(b, h, w,∆h,∆w) =
⟨Xi+1(b, ·, h, w), Xi(b, ·, h+∆h,w +∆w)⟩√

C
, (1)
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Fig. 3: Illustration of the bidirectional spatial and temporal scans. The arrange-
ments of differently colored blocks illustrate the scanning orders.

where r is the window radius and ⟨·, ·⟩ denotes the inner product. The resulting
Corri of shape [B,H,W, 2r+1, 2r+1] is reshaped into ˆCorri ∈ RB×(2r+1)2×H×W

and fed into a network f(·), which consists of two convolutional layers with GELU
activation, to predict offsets:

dh, dw = α · tanh
(
f
(

ˆCorri
))

, (2)

where α is a offset scale factor and dh, dw ∈ RB×H×W are predicted offsets. Here,
we set α = 3. Using bilinear interpolation, the features are resampled based on
the dh and dw, yielding the final aligned feature representation:

X̂i(b, ·, h, w) = I
(
Xi, h+ dh(b, h, w), w + dw(b, h, w)

)
, (3)

where I(·) denotes the interpolation function. Next, we employ bidirectional
temporal Mamba for aggregation. We stack X̂i temporally and perform temporal
forward and backward scans, as illustrated in Fig. 3, forming two sequences.
These sequences are then processed using selective state space models (SSMs)
[9] and fused to obtain the final representation. This approach explicitly models
myocardial motion, enhancing motion modeling effectiveness.

Diastolic Frame Correlation Module Existing methods overlook the RWMA
caused by MVO, missing its value for MVO identification. We propose the DFC
module, as depicted in Fig. 1c, to learn frame-to-frame correlations using the
diastolic frame as a reference. This approach is motivated by the diastole’s char-
acteristics since its minimal myocardial wall thickness and clear cardiac struc-
ture provide a reference for comparing frames, emphasizing the manifestation of
RWMA throughout the cardiac cycle. Specifically, we use diastolic frames from
either the end-diastolic phase or those adjacent to it to ensure a clear reference.

Given an input sequence x ∈ RB×C×T×H×W , we extract the diastolic frame
as the keyframe xK and replicate it along the temporal dimension to obtain x̃K .
Then x̃K is concatenated with x along the width dimension, forming a joint
representation xjoint ∈ RB×C×T×H×(2W ). Next, xjoint undergoes spatial forward
and backward scans to generate bidirectional sequences, as shown in Fig. 3. These
sequences are processed by SSMs to establish global correspondences between
each frame and the keyframe. Finally, the features are reshaped to their original
form, with the last W elements along the width dimension extracted as the final
feature. In this way, we can build a diastole-focused correlation comparison,
which highlights how cardiac motion evolves relative to the diastolic frame.
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Table 1: Performance Comparison with Competing Methods
Model AUC SpecificityAccuracy Recall F1-score Params
VST[12] 0.5878 0.5714 0.5413 0.5000 0.4786 27.58M
VIVIT[2] 0.5571 0.5974 0.5413 0.4642 0.4602 41.98M
TimesFormer[4] 0.5797 0.5389 0.5226 0.5000 0.4686 76.54M
TAM[13] 0.6372 0.6818 0.6241 0.5446 0.5495 24.80M
P3D[18] 0.6321 0.6627 0.6385 0.5909 0.5253 43.72M
C3D[22] 0.6140 0.5779 0.5677 0.5536 0.5188 63.32M
CGMR[27] 0.7231 0.7337 0.6842 0.6161 0.6216 43.72M
Our Method 0.7687 0.7532 0.7218 0.6786 0.6726 39.91M

2.2 Loss Function

To train our model for MVO identification, we use the cross-entropy (CE) loss
for classification with coarse-grained mask regularization [27] and mean square
error (MSE) loss. The total loss is defined as:

Ltotal = LCE + λ · LMSE, (4)

where LCE is the CE loss, LMSE is the MSE loss, and λ is a weighting factor
balancing the two loss components. Based on the work [27], we set λ = 0.05.

3 Experimental Results

3.1 Dataset and Metrics

The dataset includes 816 cases from acute myocardial infarction patients, ac-
quired with a 3T Siemens scanner from local hospitals. Each case contains a
cine sequence and an LGE-derived MVO annotation. The dataset was randomly
split into training (550 cases, 221 MVO-positive) and test (266 cases, 112 MVO-
positive) sets. We evaluated our model’s performance using Area Under Curve
(AUC), Specificity, Accuracy, Recall, and F1-score.

3.2 Implementation Details

We trained the model for 10K iterations with a batch size of 8, using AdamW
optimizer with an initial learning rate of 1E-5. The learning rate was scheduled
using a linear warm-up for the first 1,500 iterations, followed by a polynomial
decay policy with power 1.0 until iteration 10K. All models are trained on an
Nvidia A100 GPU. A fixed random seed was set. Data augmentation was used,
including flipping, blurring, and noise addition.

3.3 Performance Comparison with Competing Methods

Since non-contrast MVO identification is still in the early stages with limited
research, we compared our model against competing methods, including CGMR
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Table 2: Ablation Study of the Proposed Modules
AFC DFC AUC Specificity Accuracy Recall F1-score Params
✓ ✓ 0.7687 0.7532 0.7218 0.6786 0.6726 39.91M

✓ 0.7439 0.7273 0.7030 0.6696 0.6550 38.54M
✓ 0.7378 0.7273 0.7068 0.6786 0.6609 38.95M

0.7312 0.7142 0.6992 0.6786 0.6556 37.58M

Fig. 4: Examples for good and bad cases. The first two examples show suc-
cessful cases, while the last displays a failed case. The cine sequences highlight
diastole-to-systole dynamics, with the leftmost frames in diastole and the right-
most frames in systole. Yellow boxes indicate the locations of MVOs.

[27] and other computer vision approaches, as summarized in Table 1. Re-
sults show our approach effectively identifies the presence of MVO, achieving
an AUC of 0.7687 and surpassing competing methods. Fig. 4 illustrates that
our model can accurately identify MVO in most cases. However, individual vari-
ability causes some non-MVO cases to exhibit motion patterns similar to those
induced by MVO, making identification challenging.

3.4 Ablation Studies

Ablation Study of the Proposed Modules We evaluated the impact of our
proposed modules on overall performance using four configurations: (1) the full
framework, (2) without the AFC module, (3) without the DFC module, and
(4) without both. In these experiments, the AFC module was replaced with a
bidirectional temporal Mamba, while the DFC module was substituted with a
bidirectional spatial Mamba. As shown in Table 2, both modules contribute to
the performance. Replacing Mamba with the self-attention mechanism resulted
in an AUC of 0.7150, demonstrating the effectiveness of our design.
Ablation Study of the Adjacent Frame Correlation Module Table 3
presents the impact of AFC settings on performance. The results indicate that
both an optimal radius and learnable offsets improve performance. Additionally,
we visualized the AFC module’s motion modeling, as shown in Fig. 5.
Keyframe Selection Ablation We investigated the effect of keyframe selection
in the DFC module. For clarity, the entire cardiac cycle was linearly scaled to the
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Table 3: Ablation Study of the Adjacent Frame Correlation Module
Settings AUC Specificity Accuracy Recall F1-score
Radius=[1,1] 0.7451 0.7208 0.6955 0.6607 0.6463
Radius=[2,1] 0.7687 0.7532 0.7218 0.6786 0.6726
Radius=[3,1] 0.7583 0.7467 0.7180 0.6786 0.6691
Fixed Offset 0.7227 0.6753 0.6729 0.6696 0.6329

Fig. 5: Visualization of the magnitude of (dh, dw) in Offset Calculation module.
(a) shows the cine CMR from the systole to the diastole, and (b) presents the
corresponding heatmap. The heatmap effectively captures myocardial motion
degrees from systole to diastole, which are initially low, then increase over time,
and eventually decrease.

interval [0, 1], with 0 marking the start of the cycle and 1 representing the end-
diastolic (or near end-diastolic) phase. Keyframes chosen at 1/6, 1/2, and 2/3
were compared with using the frame at 1. Fig. 6a demonstrates the importance
of selecting the end-diastolic or near end-diastolic frame as the keyframe.
Number of Stages Ablation We investigated the impact of the number of
stages on our framework. Fig. 6b shows that selecting two stages achieves the
best performance.

4 Conclusion

This paper introduces a Dual Correlation-aware Mamba for MVO identification
in non-contrast cine CMR, including an Adjacent Frame Correlation module to
explicitly model the dynamics and a Diastolic Frame Correlation module to guide
motion learning. Results indicate our method enhances motion feature extraction
and outperforms competing methods. Future work will refine MVO delineation
and distinguish it from other cardiac lesions causing myocardial abnormalities.
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(a) Keyframe Selection Ablation (b) Number of Stages Ablation

Fig. 6: Visualization of performance comparison with (a) different keyframe se-
lection and (b) different number of stages.
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