
TransSino: Prior Sinogram Pattern-Based
Transformer for Limited-Angle CT Image

Segmentation

Jae Hyun Yoon, Yeong Jong Lee, and Seok Bong Yoo⋆

Department of Artificial Intelligence Convergence, Chonnam National University,
Gwangju, Korea
sbyoo@jnu.ac.kr

Abstract. Medical diagnosis using limited-angle computed tomography
(LACT) is a beneficial approach for patients due to advantages such as
faster scanning times and lower radiation doses. However, images recon-
structed from LACT contain limited information, leading to significant
artifacts and making an accurate diagnosis more challenging. Although
various methods have been proposed to reconstruct LACT images into
full-angle computed tomography (CT) images, they primarily focus on
improving image quality and operate independently of lesion segmenta-
tion models, neglecting critical lesion-related information. In this paper,
we propose TransSino, a transformer-based medical image segmentation
model that operates in the sinogram domain of LACT. TransSino learns
an auxiliary task to reconstruct the unmeasured regions in the sinogram
domain for robust segmentation performance. Specifically, it analyzes the
sequential nature of the sinogram using the transformer from language
models and reconstructs features for the unmeasured regions by using
prior sinogram patterns. Moreover, we introduce a contrastive abnormal
feature loss to enhance the contrast between abnormal and normal fea-
ture regions. Experimental results confirm that TransSino outperforms
existing medical segmentation methods on LACT images. The code is
available at https://github.com/jhyoon964/TransSino.

Keywords: Limited-angle computed tomography · Medical image seg-
mentation · Sinogram domain · Language models.

1 Introduction

Computed tomography (CT) is a widely used imaging technique for medical, in-
dustrial, and security applications due to its ability to provide images of internal
structures. As illustrated in Fig 1(a), a CT scanner operates by emitting X-rays
from a source toward the target object and measuring the attenuated signals
with a detector to generate projections. Rotating 360 degrees, it sequentially
⋆ Corresponding author
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Fig. 1. (a) Acquisition of sinogram and CT image. (b) Visualization of the sinogram,
reconstructed CT images, and the corresponding performance variations of the existing
SOTA medical segmentation model according to the angular range. (c) Performance
variations of the segmentation model with existing SOTA LACT reconstruction. (d)
The CT projections acquired in time sequence and sinusoidal characteristics. The yellow
and green sinusoidal patterns correspond to the sinogram from point in the object.

acquires these projections, which are aggregated into a sinogram. The sinogram
is then processed using algorithms like filtered back projection (FBP) to re-
construct the CT image, enabling physicians to analyze internal anatomy for
diagnosis and treatment.

Despite its advantages, CT scanning raises concerns due to the radiation
exposure, which poses risks to patients requiring frequent scanning and those
vulnerable to radiation, such as pediatric or cancer patients. Limited-angle CT
(LACT) offers an alternative by reducing the angular range of projections, signifi-
cantly decreasing the radiation dose. Additionally, LACT enables faster scanning
by restricting the physical movement of the scanner and supports applications
with physical constraints that limit scanning angles [1,5,7]. However, as depicted
in Fig. 1(b), images reconstructed from LACT suffer from artifacts caused by
the limited projection data, resulting in degraded image quality and obscured
anatomical details. As the angular range becomes more restricted, these artifacts
become increasingly severe, making an accurate diagnosis more challenging. The
bottom row of Fig. 1(b) presents the segmentation performance, measured by the
Dice similarity coefficient (DSC), of the existing state-of-the-art (SOTA) model
for intracranial hemorrhage (ICH), SAMIHS [25], on the CTICH dataset [9] as
the angular range is reduced from 360◦ to 30◦. The results indicate that DSC de-
clines due to artifact impact, presenting the limitations of existing segmentation
models [8,10,13,19,22,27] under LACT conditions.

Many efforts to reconstruct LACT images into full-angle CT images have
been explored to improve image quality. Recently, advanced deep learning-based
models [11,12,18,23,26,28] have been proposed, demonstrating effective artifact
removal and visually superior results. However, these existing LACT reconstruc-
tion models primarily focus on improving visual quality, often overlooking crit-
ical diagnostic information. As shown in Fig. 1(c), segmentation results from
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Fig. 2. Overall architecture of the proposed TransSino.

SAMIHS on CT images reconstructed using a SOTA LACT model, TIFADif-
fusion [26], reveal this limitation. Although the visual quality of the images is
improved, DSC remains suboptimal, as key lesion information is inadequately
recovered. Moreover, as shown in Fig. 1(d), the sinogram is acquired sequentially
in terms of angle and time, and exhibits combination of continuous sinusoidal
patterns. However, existing models do not account for these sequential and si-
nusoidal characteristics. Further, the latency of sequentially combined models
is measured at 70.82 seconds, which presents a challenge for achieving rapid
diagnosis in real-world clinical settings. These problems reflect the limitations
of existing reconstruction methods that operate independently of segmentation
models and fail to use the characteristics of the sinogram, which contains intact
information before reconstruction via algorithm such as FBP.

To address these problems, we propose TransSino, a transformer-based medi-
cal image segmentation model using sinogram, which is unified with an auxiliary
reconstruction approach and designed to be robust under LACT conditions.
Our main contributions are as follows: (i) We propose a transformer-based seg-
mentation model unified with an auxiliary reconstruction approach. Inspired by
language models, this model handles the time-dependent characteristics in the
sinogram for LACT. (ii) We propose a prior pattern transformer module to re-
construct unmeasured projections using the prior sinusoidal pattern cues of the
sinogram with disentangled representation. (iii) We propose a contrastive abnor-
mal feature loss that contrasts the characteristics of abnormal lesion regions with
normal non-lesion regions in the feature space. This approach is achieved using
paired CT data generated via an inpainting-based data augmentation technique.

2 Methods

As depicted in Fig. 2, we propose TransSino, a robust segmentation model de-
signed for LACT conditions. TransSino embeds time-sequential projections and
applies projection padding for unmeasured regions. Afterward, a sequence trans-
former captures temporal relationships, while a prior pattern transformer re-



4 Yoon et al.

stores unmeasured projections using prior sinusoidal patterns. The refined sino-
gram features are fed into segmentation and reconstruction decoders, guided by
the total loss Ltotal, which integrates segmentation, reconstruction, and abnor-
mal feature losses (Lseg, Lrecon, and Labnorm) for enhanced performance.

2.1 Sinogram Feature Reconstruction

As mentioned in Fig. 1(d), the sinogram has time-sequential and sinusoidal char-
acteristics, which inherently contains the temporal and angular relationships,
indicating the applicability of language models. Although existing models use
the sinogram as additional information, they often overlook its time-sequential
nature and do not properly handle its complex entangled sinusoidal patterns,
leading to suboptimal reconstruction outcomes. To address this limitation, we
introduce a sinogram feature reconstruction block to analyze the sinogram’s in-
herent features and enhance restoration performance.

As shown in Fig. 2, we use sinogram data to handle the time-dependent
characteristics of the CT projections. Although we do not directly utilize natu-
ral language, we adopt the transformer architecture inspired by language models
such as Llama [6], treating each of the projections in CT as similar to word to-
kens. Each of the Nv projections passes through a time-sequential projection
embedding, consisting of a linear layer, to obtain embedded projections with
dimensions Nv×D. The embedded projections along with angle information θ◦

are then fed into a projection padding module, which creates space for the un-
measured projections and aligns the dimensions with a full-angle sinogram. The
resulting projections are used as input to the sinogram feature reconstruction
block, consisting of sequence transformer and prior pattern transformer. The
sequence transformer and prior pattern transformer are alternated over L cy-
cles, progressively refining the features to extract the final sinogram feature f .
Then, for auxiliary learning, f is fed into two decoders: the primary decoder for
segmentation and the auxiliary decoder for reconstruction.
Sequence Transformer. Each embedded projection undergoes root mean
square normalization (RMSNorm) and is passed through a linear layer to gen-
erate the query Qs, key Ks, and value Vs. The Qs and Ks are further processed
through a rotary positional embedding and then enter the self-attention mecha-
nism inspired by Llama [6]. The resulting feature is added to the previous output
through a residual connection, followed by RMSNorm and a feed forward net-
work (FFN). This process enables the model to capture the relationships among
projections and infer projection information for the unmeasured angular regions.
Prior Pattern Transformer. As shown in the bottom left of Fig. 2, the pre-
generated sinograms exhibit N2 sinusoidal patterns as a result of the Radon
transform [21] applied to H

N×W
N binary blocks shifted across the H×W image.

Each point in the image is mapped to a distinct pattern in the sinogram. Based
on this observation, we introduce the prior pattern transformer to restore the
patterns in the unmeasured regions of the sinogram by using the prior knowledge.

While the sequence transformer focuses on analyzing the relationships among
projections, the prior pattern transformer captures the relationships between the
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distinct sinusoidal patterns within the sinogram. In the sinogram obtained from
CT scanning, these sinusoidal patterns are intricately intertwined, making them
challenging to interpret. Inspired by disentangled representation learning [24], we
use prior patterns, which facilitate disentangling complex patterns in the sino-
gram and guide the generation of unmeasured regions. For this, the prior pattern
transformer separates the sinogram feature obtained from the sequence trans-
former into N2 channels. It then analyzes the correlation between the separated
N2 channels and the pre-generated N2 prior patterns through an prior pattern
attention mechanism. This mechanism captures the relationships between the
distinct sinusoidal signals within the sinogram. The resulting feature is added
via a residual connection and further processed via RMSNorm and FFN.

2.2 Auxiliary Learning of Segmentation and Reconstruction

Existing LACT reconstruction models focus on producing visually superior re-
sults over the global image but often fail to account for lesion-related local re-
gions. This limitation arises because these models operate independently of seg-
mentation models, forcing the segmentation task to rely on potentially unstable
outputs. To address this issue, we introduce an auxiliary learning approach uni-
fying the segmentation and reconstruction tasks.

The reconstruction decoder consists of an RMSNorm, a linear layer, and
two convolutional layers, outputting the restored sinogram x̂s. The x̂s is then
passed through FBP to reconstruct CT image x̂i. For training, we define the
reconstruction loss as follows:

Lrecon = ∥xs−x̂s∥2+∥Gx(xs)−Gx(x̂s)∥1+∥Gy(xs)−Gy(x̂s)∥1+∥xi−x̂i∥2, (1)

where xs and xi are the ground truth (GT) of sinogram x̂s and CT image x̂i.
Gx and Gy denote the gradient operators for horizontal and vertical directions.

The segmentation decoder and loss Lseg, consisting of Dice and cross-entropy
losses, follow TransUNet [3]. The decoder output is a sinogram ŷs, which is passed
through FBP to produce the segmentation map ŷi. Unlike existing models oper-
ating in the image domain, TransSino directly analyzes the sinogram, enabling
the application of language models that capture its sequential nature. Further,
it preserves critical signals that may be lost during FBP reconstruction, allowing
for more precise segmentation. Then, using ŷi and the GT map yi, Lseg is ob-
tained. By integrating Lseg with Lrecon, the model is trained to be robust under
LACT conditions while preserving lesion-related details for accurate diagnosis.

2.3 Contrastive Abnormal Feature Loss

In medical imaging, subtle lesions or abnormalities are common and often
challenging to detect. To identify subtle differences, anomaly detection typi-
cally transforms abnormal data into normal data and detects abnormalities by
comparing the differences. However, this approach often introduces unintended
changes in normal regions, leading to potential inaccuracies in lesion detection.
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Fig. 3. Illustration of the contrastive abnormal feature loss.

Instead, we introduce an augmentation technique combining anomaly detection
with inpainting to focus on regions of interest for generating paired data. Fur-
ther, we propose a loss function that maximizes the feature differences between
abnormal and normal regions, using the paired data to distinguish abnormalities.

As depicted in Step 1 of Fig. 3, similar to existing anomaly detection, the
diffusion model is pre-trained on normal data. Building on this, in Step 2, we
propose an inpainting method inspired by RePaint [15], where only the lesion
regions are masked and transformed into normal representations as follows:

x̂t−1 = x̂t−1 ⊙M + xt−1 ⊙ (1−M), (2)

where x̂t−1 denotes the reverse diffusion result estimated from x̂t at time step
t, xt−1 is the forward diffusion result of abnormal data x0, M is the GT binary
segmentation map, and ⊙ is element-wise multiplication. The diffusion process
is repeated over T time steps (set to 1000 [15]), preserving normal regions while
modifying the masked abnormal regions to generate the paired normal data x̂0.

Using these paired abnormal and normal data obtained via this process, in
Step 3, we apply the contrastive abnormal feature loss Labnorm as follows:

Labnorm = sigmoid(−∥(fa − fn)⊙Ms∥2), (3)

where fa and fn denote the sinogram features obtained by the sinogram feature
reconstruction using abnormal and normal data. The Ms denotes the abnormal
region map, which is binarized using Otsu’s method [17] from the sinogram trans-
formed by the segmentation map. This loss maximizes the differences between
normal and abnormal regions in the feature space for improved segmentation.

Finally, the total loss is defined using Lseg and Lrecon in Section 2.2 as follows:

Ltotal = Lseg + Lrecon + Labnorm. (4)

3 Experiments

3.1 Experimental Setup

Dataset. The CTICH dataset [9] comprises CT scans from 82 patients with
traumatic brain injuries, including 36 patients with ICH. It contains 2814 slices
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Table 1. Quantitative comparison of medical image segmentation models on CTICH
and FUMPE datasets across different angular ranges (360◦, 120◦, 90◦, 60◦, and 30◦).

Segmentation
Method

360◦ 120◦ 90◦ 60◦ 30◦

DSC ↑ HD95 ↓ DSC ↑ HD95 ↓ DSC ↑ HD95 ↓ DSC ↑ HD95 ↓ DSC ↑ HD95 ↓
CTICH Dataset [9]

TransUNet [3] 67.41 21.62 62.74 22.69 59.62 25.99 50.53 31.25 43.59 49.92
Swin-UNet [2] 61.92 36.33 54.64 37.50 51.44 40.36 43.31 42.72 32.47 64.32

TransCASCADE [20] 63.70 21.92 58.86 34.92 56.19 33.04 50.89 42.57 40.85 55.18
SCUNet++ [4] 65.70 26.29 58.95 21.75 57.44 22.93 50.45 28.34 41.94 47.63
SAMIHS [25] 68.12 20.40 61.36 21.50 57.34 22.71 52.19 34.06 43.75 38.65

Ours 68.27 17.74 65.34 17.63 62.19 18.45 58.97 20.64 56.71 28.05
FUMPE Dataset [16]

TransUNet [3] 76.48 11.12 73.92 12.91 70.89 12.76 63.68 16.44 48.90 20.30
Swin-UNet [2] 72.31 20.05 69.97 21.73 65.54 21.88 61.43 26.38 44.84 31.64

TransCASCADE [20] 73.75 12.72 72.39 13.15 70.45 15.29 64.51 18.15 53.63 21.30
SCUNet++ [4] 76.39 13.76 73.61 14.59 69.43 17.24 61.73 19.65 46.75 26.64
SAMIHS [25] 77.04 12.14 74.33 12.59 71.92 12.81 66.64 15.33 55.50 23.60

Ours 77.09 10.91 75.16 11.62 74.73 11.91 70.96 12.89 66.14 16.85

Table 2. Quantitative comparison of medical image segmentation models with LACT
reconstruction models on CTICH and FUMPE datasets across different angular ranges.

Reconstruction
Method

Segmentation
Method

120◦ 90◦ 60◦ 30◦ Latency
(s) ↓

Params
(M) ↓

FLOPs
(T) ↓DSC ↑ HD95 ↓ DSC ↑ HD95 ↓ DSC ↑ HD95 ↓ DSC ↑ HD95 ↓

CTICH Dataset [9]
DOLCE

[12]
TransUNet [3] 61.15 28.21 59.99 20.03 56.65 21.80 51.62 32.45 8.88 379.59 57.19
SAMIHS [25] 62.13 17.95 59.48 19.99 55.13 22.06 52.90 30.59 8.87 364.09 57.43

TIFADiffusion
[26]

TransUNet [3] 64.64 18.87 59.78 19.74 56.78 25.85 49.65 34.74 70.83 169.34 530.22
SAMIHS [25] 63.72 21.56 61.25 19.25 52.65 28.20 46.31 29.71 70.82 153.92 530.46

Ours 65.34 17.63 62.19 18.45 58.97 20.64 56.71 28.05 0.45 222.07 0.92
FUMPE Dataset [16]

DOLCE
[12]

TransUNet [3] 74.02 12.68 72.11 12.50 64.53 16.71 57.63 18.47 8.88 379.59 57.19
SAMIHS [25] 74.65 12.71 72.76 12.15 68.14 13.55 59.67 20.72 8.87 364.09 57.43

TIFADiffusion
[26]

TransUNet [3] 74.69 12.85 72.56 12.41 65.85 14.74 55.13 19.63 70.83 169.34 530.22
SAMIHS [25] 74.95 12.18 73.59 12.33 68.49 14.01 60.57 17.38 70.82 153.92 530.46

Ours 75.16 11.62 74.73 11.91 70.96 12.89 66.14 16.85 0.45 222.07 0.92

at 512×512 pixels. The FUMPE dataset [16] comprises CT scans from 35 pul-
monary embolism (PE) patients. It contains 8792 slices at 512×512 pixels. The
labeled data in each dataset were split into training and testing sets with an 8:2
ratio. We simulated forward and back projection using fan-beam geometry with
TorchRadon [21] across angular ranges of 120◦, 90◦, 60◦, and 30◦. We used DSC
and 95% Hausdorff distance (HD95) for evaluation.
Implementation Details. This paper sets the number of detectors D to 768
and the total number of sinogram projections to 720 [14]. It sets N to 32, and L
to 8. The experiments were conducted on an NVIDIA RTX 3090 GPU. TransSino
used the Adam optimizer with learning rate 1e-3 for 150 epochs.

3.2 Experimental Results

Main Results. Table 1 evaluates the performance of medical image segmen-
tation models on CTICH and FUMPE datasets across different angular ranges.
All models were trained across all angular ranges at once. The results show
that TransSino outperforms existing image domain models, even at 360◦ range,
indicating the effectiveness of our reconstruction modules and losses.



8 Yoon et al.

Fig. 4. Comparison of segmentation and reconstruction results on CTICH and FUMPE
datasets. The values indicate average PSNR (dB) and R-PSNR (dB), respectively.

Table 3. (a) Ablation study of TransSino and (b, c) analysis of hyperparameters N and
L on the CTICH dataset. DSC is measured as the average across all angular ranges.

Sequence
Transformer

Prior Pattern
Transformer

Auxiliary
Reconstruction Loss

Contrastive Abnormal
Feature Loss DSC ↑

✓ ✓ ✓ ✓ 60.80
✓ ✓ ✓ 59.17

✓ ✓ ✓ 57.73
✓ ✓ ✓ 57.96
✓ ✓ ✓ 59.50

56.78
(a)

N DSC ↑
16 60.76
32 60.80
64 58.16
128 55.33

(b)

L DSC ↑
4 57.27
6 59.12
8 60.80
10 60.64

(c)

Table 2 evaluates the segmentation models combined with LACT reconstruc-
tion models on CTICH and FUMPE datasets across different angular ranges.
The latency, Params, and FLOPs are presented as the sum of both models.
The results indicate that TransSino consistently outperforms existing models,
even when combined with image domain reconstruction models. Additionally,
TransSino achieves much lower latency and FLOPs while maintaining compa-
rable Params compared to the combined models. This performance gain is at-
tributed to our approach using sinogram characteristics and auxiliary learning.

In Fig. 4, we compare the visual results of the reconstruction and segmenta-
tion models on CTICH and FUMPE datasets. Further, we evaluate the recon-
struction performance averaged over each dataset in terms of PSNR and region
PSNR (R-PSNR), measured within the lesion region using the GT map. The
results indicate that TransSino provides more consistent outputs and better re-
constructs lesion-related regions, such as ICH and PE, than the existing models.
Ablation Study. Table 3(a) presents the ablation study assessing the each
component’s contribution to TransSino. The results show that the first row,
where all modules are activated (✓), achieves the highest DSC compared to the
remaining rows, where individual modules are removed. This indicates that each
module contributes to the performance gain. Further, Table 3(b and c) determine
the optimal values for N and L, confirming best performance at 32 and 8.
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4 Conclusion

This study presents an effective medical image segmentation strategy, surpassing
existing methods under LACT conditions. TransSino predicts missing compo-
nents by analyzing inherent order dependencies in the sinogram and disentan-
gling sinusoidal patterns using prior knowledge for precise restoration. Further, it
effectively distinguishes lesion regions via a unified loss function, ensuring robust
performance while reducing complexity for diagnostic applications. Experimen-
tal results on ICH and PE in the brain and lungs show promising performance,
suggesting generalizability to different anatomical regions. Although we use sim-
ulated LACT data by benchmarking existing methods [11,12,18,23,26,28], future
work will focus on validation with real LACT data. Furthermore, we plan to ex-
tend our approach to 3D segmentation and reconstruction to better reflect its
applicability to real-world volumetric data.
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