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Abstract. Various neuroimaging studies suffer from small sample size
problem which often limit their reliability. Meta-analysis addresses this
challenge by aggregating findings from different studies to identify consis-
tent patterns of brain activity. However, traditional approaches based on
keyword retrieval or linear mappings often overlook the rich hierarchical
structure in the brain. In this work, we propose a novel framework that
leverages hyperbolic geometry to bridge the gap between neuroscience
literature and brain activation maps. By embedding text from research
articles and corresponding brain images into a shared hyperbolic space
via the Lorentz model, our method captures both semantic similarity and
hierarchical organization inherent in neuroimaging data. In the hyper-
bolic space, our method performs multi-level neuroimaging meta-analysis
(MNM) by 1) aligning brain and text embeddings for semantic correspon-
dence, 2) guiding hierarchy between text and brain activations, and 3)
preserving the hierarchical relationships within brain activation patterns.
Experimental results demonstrate that our model outperforms baselines,
offering a robust and interpretable paradigm of multi-level neuroimaging
meta-analysis via hyperbolic brain-text representation.
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1 Introduction

Recent research in neuroscience is rapidly expanding our understanding of brain
function and structure, uncovering diverse aspects of neural organization across
various regions [18,?]. However, neuroimaging studies are often underestimated
due to small sample sizes of their experiments [3,19]. Brain meta-analysis tackles
these challenges by integrating neuroscientific descriptions (i.e., body text) with
corresponding brain activation maps from multiple studies to identify consistent
patterns in the brain. Traditional approaches [10,20,7] have relied on predefined
keywords and regression models to discover these patterns by predicting brain
activation maps from textual descriptions. More recent approaches utilize large
language models (LLMs) to handle longer sequences [14], and employ contrastive
learning to map textual descriptions and activation coordinates into a joint rep-
resentation space [12] for text-to-brain activation prediction.

Notice that the human brain exhibits a naturally nested organization, where
broad regions are gradually subdivided into more specialized areas as in Fig. 1(a).
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Fig. 1. Motivation of MNM. (a) The brain exhibits a spatial hierarchy, where broad
regions can be further subdivided into more specific regions. (b) Each brain region can
correspond to various articles covering diverse topics, such as functionalities.

Capturing these multi-level relationships is essential for robustly linking textual
descriptions from a coarse activation (i.e, involved hemisphere) to fine details
(i.e., the most relevant region of interests (ROIs)). Also, as depicted in Fig. 1(b),
each brain region is defined by its unique functionality and can be linked to
numerous articles that explore diverse topics related to these functions. Such
insights on hierarchy are not included in previous approaches, where they map
brain activation and text pairs to the identical point in the Euclidean space [12].

To better jointly represent brain activation and text pairs, we rely on hy-
perbolic spaces with exponentially expanding geometry, which are suited for
representing tree-like structures. Therefore, we propose to embed the corre-
sponding pairs into a shared hyperbolic space, together with an angle-based
contrastive learning to capture mutual context between brain activation and
text. Our framework, Multi-level Neuroimaging Meta-analysis with Hyperbolic
Brain-Text Representations (MNM), preserves these inherent hierarchical rela-
tionships and overcomes the limitations of the Euclidean method, which lead
to the following major contributions: 1) We introduce a hyperbolic embed-
ding framework for neuroimaging meta-analysis that naturally captures semantic
associations between brain and text and brain’s hierarchical structure. 2) We
propose a brain structural hierarchy guidance such that brain structural hierar-
chy is preserved in the hyperbolic space. 3) MNM is validated through extensive
experiments on neuroimaging meta-analysis, such as cross-modal retrieval and
brain activation prediction, demonstrating enhanced semantic alignment and in-
terpretability in the same setting in [12]. Cross-modal retrieval and brain activa-
tion map prediction demonstrate that our approach not only improves semantic
alignment between brain and text modalities but also preserves the multi-level
organization of brain regions. Hierarchical structure analyses and ablation stud-
ies further confirm that incorporating both brain structural and brain–text hier-
archies leads to more interpretable analyses and enhanced retrieval performance.

Related Works on Neuroimaging Meta-Analysis. Previous approaches
for brain meta-analysis have transitioned from manual to automated methods.
BrainMap [10] manually curated neuroimaging articles, a strategy that struggles
to scale with the growing size of literature. NeuroSynth [20] and NeuroQuery [7]
automate the extraction of brain activation coordinates using fixed keywords and
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statistical techniques, yet they are limited by bag-of-words representations that
fail to capture complex semantics. Text2Brain [14] addresses this by using SciB-
ERT [2] embeddings and convolutional neural networks to generate 3D activation
maps, though it faces challenges with longer texts. Recently, NeuroConText [12]
employs a contrastive framework that leverages advanced language models such
as Mistral-7B [9] alongside the Dictionary of Functional Mode (DiFuMo) atlas [5]
to enhance the alignment between paired modalities. While we adopt identically
processed dataset from [12], MNM outperforms it by leveraging hyperbolic ge-
ometry to capture the brain’s intrinsic hierarchical structure, thereby achieving
superior semantic alignment and more flexible multi-level meta-analysis.

2 Preliminary : Hyperbolic Spaces and Lorentz Model

Unlike Euclidean space, hyperbolic space expands exponentially under constant
negative curvature, making it highly effective for representing hierarchical struc-
tures. This enables capturing multi-level traits in both brain structure and text.
Lorentz model. Lorentz model Ln expresses the n-dimensional hyperbolic
space with curvature c. It is defined in a (n + 1)-dimensional Euclidean space
Rn+1 as Ln = {x ∈ Rn+1 | ⟨x,x⟩L = −1/c, x0 > 0}, where Lorentzian inner
product is defined as ⟨x,y⟩L = −x0y0 +

∑d
i=1 xiyi. Following [13], x ∈ Ln is

expressed as [xtime ∈ R,xspace ∈ Rn]. Then, xtime is determined as:

xtime =

√√√√1/c+

d∑
i=1

x2
i . (1)

Geodesics. The shortest distance between two points x, y on the hyperboloid
is called Lorentzian distance dL(x,y) and given by:

dL(x,y) =
√

1/c cosh−1(−c⟨x,y⟩L). (2)

Tangent space. Tangent space at a point u ∈ Ln is an Euclidean space spanned
by a set of vectors orthogonal to u. For z ∈ Rn+1 in the tangent space, exponen-
tial map Expu(z) transforms z into x ∈ Ln in the hyperbolic space as

x = Expu(z) = cosh (
√
c
√

⟨z, z⟩L)u+
sinh(

√
c
√

⟨z, z⟩L)√
c
√

⟨z, z⟩L
z. (3)

With the hyperboloid origin O = [1/c,0] introduced in [6], xspace is defined as

xspace = Exp[1/c,0](z) =
sinh(

√
c
√

⟨z, z⟩L)√
c
√

⟨z, z⟩L
z (4)

Centroid. In the hyperbolic space, the centroid of N points in Lorentz space
can be computed in the Klein space Kn. Conversion between two spaces are

TL→K(x) =
xspace

xtime
, TK→L(k) =

[1,k]√
c(1− ∥k∥2)

, (5)
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Fig. 2. Concept of Our Objective Functions. (a) The angle-based contrastive
loss minimizes the exterior angle between a text embedding and its corresponding
brain activation embedding. (b) The centroid loss encourages the centroid of brain
embeddings Cbrain to be positioned closer to the hyperboloid origin than the centroid
of text embeddings Ctext. (c) The hierarchical loss aligns brain embeddings along the
hyperbolic time axis by the number of activated regions for brain structural hierarchy.

where k ∈ Rn is a point in Kn. Lorentzian centroid is then defined as

centroidL

(
{xj}Nj=1

)
= TK→L

(∑N
j=1 γjTL→K(xj)∑N

j=1 γj

)
, (6)

where the Lorentz factors γj ∈ R are defined as 1/
√
1− c∥TL→K(xj)∥2.

3 Hyperbolic Brain-Text Representation

Given a neuroscience article indexed by i, let (bi, ti) denotes a pair of brain ac-
tivation data and LLM-representation of its corresponding neuroscientific text.
For neuroimaging meta-analysis, which seeks to identify the most relevant brain
regions from a given textual description or retrieve corresponding brain activa-
tions, our goal is to embed bi and ti into a shared space while preserving both
the brain-text hierarchy as well as the structural hierarchy of the brain.

Angle-based Contrastive Learning. Unlike contrastive learning [6] that min-
imizes the spatial distances in a hyperbolic space, we adopt an angle-based sim-
ilarity measure [16] since regularizing geodesic distance weakens the hierarchical
dependency. We employ two parallel encoders: a brain activation encoder Ebrain
and a text encoder Etext. After mapping the bi and ti into their respective Eu-
clidean latent spaces, we project each of these onto d-dimensional hyperbolic
space Ld via Eq. (4) as ztexti = Etext(ti) and zbraini = Ebrain(bi). Since each brain
region can be characterized by different functionalities as depicted in Fig. 1(b),
we assume that brain activations have higher hierarchy (i.e., broader context)
than textual descriptions. Denoting z·i,time and z·i,space as the time and space
component of z·i, exterior angle of ztexti from zbraini is then defined as

ext(zbrain, ztext) = cos−1

(
ztexti,time + zbraini,time · c⟨zbrain, ztext⟩L
∥zbraini,space∥

√
(c⟨zbrain, ztext⟩L)2 − 1

)
. (7)
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As exterior angle is defined in [−π, π], smaller absolute angle indicates higher
correspondence. To increase similarity between corresponding pair and discrep-
ancies between non-corresponding pairs, we utilize InfoNCE loss [15] to define
our angle-based loss by minimizing the absolute angles of positive pairs as

Langle = − 1

N

N∑
i=1

log
exp

(
−|ext(zimg

i , ztext
i )|/τ

)
∑N

j=1 exp
(
−|ext(zimg

i , ztext
j )|/τ

) . (8)

Centroid Regularization. To reflect the hierarchy between the brain activa-
tions and text, zbrain needs to be positioned closer to the hyperboloid origin O
than ztext as a smaller distance from O corresponds to a higher hierarchy. How-
ever, Langle alone does not have explicit control over the spatial position of the
embeddings. To explicitly enforce this ordering, we first compute the centroids
of the brain activation embeddings and the article text embeddings, denoted by
cbrain and ctext each, as described in Eq. (6). We then impose a constraint that
guides these centroids toward predetermined target distances respectively as

Lcent =

∥∥∥∥dL(O, ctext)−
1√
c
cosh−1(cp)

∥∥∥∥+ ∥∥∥∥dL(O, cimg)−
1√
c
cosh−1(cq)

∥∥∥∥ , (9)

where p, q ∈ R+ are hyperparameters satisfying p > q and || · || is the Euclidean
norm. This condition ensures that the ‘broader’ brain activation embeddings are
positioned closer to the hyperboloid origin than the ‘detailed’ text embeddings.

Brain Structural Hierarchy Guidance. Brain activation map exhibits vary-
ing levels of specificity from global regions (e.g., left hemisphere) to local regions
(e.g., superior temporal gyrus) as illustrated in Fig. 1(a). To refine this structural
hierarchy among brain embeddings, we introduce a brain structural hierarchy
guidance based on the number of the activation regions. Specifically, we set Ri

as how many ROIs in bi have values greater than predefined threshold δ. The
brain structural hierarchy guidance between two brain embeddings is defined as

Lhier =
1

N2

N∑
i=1

N∑
j=1

1ij(Ri −Rj) ·max(log(zbraini,time/z
brain
j,time), 0), (10)

where 1ij is an indicator function that equals 1 if Ri > Rj . This penalizes when
a broader brain activation (i.e., a more general pattern) is wrongly placed at a
lower hierarchical level (i.e., with a larger time value) than a localized activation.

Joint Optimization. The final training loss is a weighted combination as:

L = Langle + λ1Lcent + λ2Lhier, (11)

where λ1, λ2 ∈ R+ are hyperparameters that balance the contributions of cen-
troid regularization and brain hierarchical loss. By jointly minimizing this ob-
jective, the model learns to capture both the semantic alignment and the hier-
archical structure necessary for robust neuroimaging meta-analysis.



6 S. Baek et al.

4 Experimental Settings

Data Preparation. Our work follows the setting established by NeuroCon-
Text [12], which processed 20,674 neuroscientific articles from PubMed along
with their corresponding brain activation peak coordinates. With a pretrained
LLM (i.e., Mistral-7B), text representation ti is derived from textual descrip-
tions (e.g., abstract or body). A corresponding discrete brain activation peak
coordinate is converted into continuous brain activation voxel maps via Kernel
Density Estimation (KDE), and subsequently projected onto a 512-dimensional
coefficients using the Dictionary of Functional Modes (DiFuMo) atlas as bi.

Implementation Details. For Etext and Ebrain, we use a two-layer and three-
layer residual MLP, respectively, followed by layer normalization. We train the
model for 200 epochs using the AdamW optimizer [11] with a learning rate of
1×10−4, a batch size of 4096, and a weight decay of 0.05. We set λ1 = 0.5, λ2 =
30, δ = 5, p = 2.0, and q = 0.5. We use pretrained weights for Text2Brain [14]
and NeuroQuery [7], while NeuroConText [12] is trained under the same settings
as our model. The code and dataset will be publicly available.

5 Results and Analysis

Brain-Text Cross Modal Retrieval. To evaluate our semantic alignment
performance, we perform text-to-brain and brain-to-text retrievals. In the text-
to-brain setting, the model ranks candidate brain activations by their relevance
to given textual descriptions (e.g., abstracts or full-body text). The brain-to-text
setting reverses it, from a brain activation to the most relevant article. We adopt
a 10-fold cross-validation to rigorously evaluate recall@K, K ∈ {5, 10, 100}. Re-
call@K evaluates whether the true pair appears among the top-K similar candi-
dates, making it suitable for ranking tasks. For comparison, the following base-
lines are adopted. Since Text2Brain [14] and NeuroQuery [7] directly generate
3D brain activations from text, mean squared error (MSE) is used as similarity

Table 1. Comparison of Brain-Text Cross-Modal Retrieval Performance using two
types of textual descriptions. The best performance is indicated in bold.

Retrieval Text→Brain Brain→Text
Metric [%] Recall@5 Recall@10 Recall@100 Recall@5 Recall@10 Recall@100

A
bs

tr
ac

t

Text2Brain [14] 0.247±0.026 0.469±0.022 4.837±0.075 - - -
NeuroQuery [7] 4.266±0.262 7.560±0.389 36.055±0.761 - - -
NeuroConText [12] 9.964±0.663 15.033±0.808 45.120±1.098 10.046±0.683 15.183±0.790 45.168±1.077
MNM-Reverse 8.852±1.224 13.486±42.585 42.585±3.000 10.332±0.562 15.096±0.964 44.636±1.270
MNM w/o Lhier 10.699±0.650 15.807±0.653 45.734±1.286 10.458±0.590 16.218±0.764 46.406±1.057
MNM 10.728±0.673 15.860±0.668 45.864±1.417 10.593±0.627 16.320±0.822 46.590±1.217

B
od

y

Text2Brain [14] 0.237±0.014 0.479±0.015 4.832±0.079 - - -
NeuroQuery [7] 4.421±0.374 7.696±0.458 36.055±0.562 - - -
NeuroConText [12] 13.660±0.520 20.228±0.742 51.945±0.961 13.747±0.579 19.517±0.449 51.572±0.771
MNM-Reverse 13.756±0.575 20.136±0.485 51.969±0.736 14.087±0.556 21.176±0.575 53.134±0.845
MNM w/o Lhier 14.288±0.747 20.649±0.850 52.670±0.735 14.569±0.648 21.302±0.396 53.342±0.797
MNM 14.434±0.618 20.741±0.574 52.709±0.928 14.806±0.449 21.360±0.414 53.623±0.698
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Fig. 3. Effect of Brain Hierarchical Loss. (a) Histogram between xtime and the
number of activated ROIs without Lhier, showing −0.30 of Kendall’s τ [17] (b) Same
histogram with Lhier, decreasing Kendall’s τ to −0.58. (c) 2D Poincaré disk projection
of Yeo7 and Yeo17 network [21] embeddings (left: w/o Lhier, right: w/ Lhier).

measure between the predicted brain activation and each candidate. Unlike [12]
using cosine similarity, MNM adopts the negation of the absolute exterior angle.

For MNM, we employ two additional settings: (1) MNM-Reverse that re-
verses the hierarchy of MNM by flipping the brain and text relationship in Lext

and Lcent, and (2) MNM w/o Lhier. As shown in Table 1, our method consis-
tently outperforms all baselines in both text-to-brain and brain-to-text retrieval,
with the largest improvement observed in brain-to-text retrieval when using full-
body text. Degraded performances in two additional settings demonstrate the
rationality of brain-text hierarchy and the need for explicit hierarchy guidance.

Brain Hierarchy Analysis. To show the effect of Lhier, we analyze how sam-
ples are distributed in the latent space. One of our goals is to model the inherent
hierarchy of brain activation patterns, such that more general (i.e., widely acti-
vated) regions lie closer to the hyperbolic origin than more specific (i.e., smaller
or functionally narrower) ones. To verify the assumption with the trained em-
beddings using Lhier, we plot histograms of xtime against the number of activated
ROIs, along with Kendall’s τ [17] to quantify the ordinal correlation in a range
[−1, 1]. A negative τ indicates that embeddings with broader activations tend to
reside at a higher “level” (i.e., smaller xtime) in the hyperbolic space. In Fig. 3,
while embeddings are dispersed (a) without Lhier resulting in -0.30 of Kendall’s
τ , they are more inversely aligned (b) with Lhier resulting in Kendall’s τ = −0.58.

We further examine two well-known cortical parcellation schemes, Yeo7 and
Yeo17 networks [21]. The Yeo7 network segments the brain into seven broad
functional systems, while the Yeo17 network refines this into 17 detailed subdi-
visions. To visualize these divisions, we map them into the learned hyperbolic
space and project them onto a 2D Poincaré disk [4]. Due to page limitations, we
visualize only half of the Poincaré disk, varying the presence of Lhier. In Fig. 3(c),
the embeddings from both networks exhibit no discernible order in the left half
when Lhier is absent. However, with Lhier, Yeo7 embeddings cluster near the
origin in the right half, enhancing interpretability. This organization supports a
coarse-to-fine analysis by selecting xtime from brain activation map candidates.
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Fig. 4. Reconstructed Brain Activation Map from a Neuroscience Article [8].
While NeuroConText [12] fails to capture activation in the intraparietal sulcus using
Yeo17 networks, MNM assigns high similarity scores to them as in the ground truth.

Brain Activation Map Prediction. To evaluate text-brain alignment beyond
the task-specific decoder, we use the embeddings of Yeo7 and Yeo17 networks [21]
as our brain activation bases. With body text of given articles, we calculate the
similarity of the text embedding and brain activation bases of two networks. Neu-
roConText [12] is a unique baseline, since it aligns both modalities in the shared
latent space as we do. We employ the same similarity metric as in the brain-text
cross-modal retrieval experiment. The resulting similarities are transformed into
probabilities using a softmax function and assigned to the corresponding voxels
in the 3D brain. For better visualization, we threshold the top 10% of voxels and
visualize using brain glass schematics via the Nilearn [1] software.

Figure 4 illustrates how embeddings can be recovered using the Yeo7 and
Yeo17 networks for a study [8] that investigates the neural mechanisms under-
lying visuospatial attention reorientation. The study demonstrates that both
blocked and event-related analyses consistently activate the intraparietal sulcus
and superior parietal cortex. In coarse prediction using the Yeo7 networks, both
NeuroConText and MNM exhibit a high correlation (i.e., top 10% similarity)
with the activated regions. However, with the finer-grained Yeo17 network, Neu-
roConText fails to capture the target regions, whereas our method successfully
identifies them. Since most detected regions overlap across different parcella-
tion levels, MNM demonstrates greater consistency compared to NeuroConText.
These results indicate that our hyperbolic representation can flexibly adapt to
various parcellation schemes when inferring activation maps from articles.

6 Conclusion

In this work, we propose MNM, a novel framework that leverages hyperbolic
geometry to capture the inherent hierarchical structure of brain activations while
aligning them more effectively with corresponding textual descriptions. Through
extensive experiments, we demonstrate that MNM not only surpasses baselines
in cross-modal retrieval but also provides greater interpretability in activation
map prediction. By providing robust performances across various parcellation
schems, MNM paves the way for multi-level neuroimaging meta-analysis.
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