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Abstract. Accurate tumor segmentation is crucial for cancer diagnosis
and treatment. While foundation models have advanced general-purpose
segmentation, existing methods still struggle with: (1) limited incor-
poration of medical priors, (2) imbalance between generic and tumor-
specific features, and (3) high computational costs for clinical adap-
tation. To address these challenges, we propose MAST-Pro (Mixture-
of-experts for Adaptive Segmentation of pan-Tumors with knowledge-
driven Prompts), a novel framework that integrates dynamic Mixture-of-
Experts (D-MoE) and knowledge-driven prompts for pan-tumor segmen-
tation. Specifically, text and anatomical prompts provide domain-specific
priors, guiding tumor representation learning, while D-MoE dynamically
selects experts to balance generic and tumor-specific feature learning, im-
proving segmentation accuracy across diverse tumor types. To enhance
efficiency, we employ Parameter-Efficient Fine-Tuning (PEFT), optimiz-
ing MAST-Pro with significantly reduced computational overhead. Ex-
periments on multi-anatomical tumor datasets demonstrate that MAST-
Pro outperforms State-of-The-Art approaches, achieving up to a 5.20%
improvement in average DSC while reducing trainable parameters by
91.04%, without compromising accuracy.

Keywords: Pan-tumor segmentation · Foundation model · Mixture-of-
Expert.

1 Introduction

Cancer remains a leading cause of mortality worldwide, with incidence and death
rates continuing to rise [1]. Since cancer originates from diverse tumor types,
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early and accurate tumor segmentation is crucial for improving patient outcomes.
However, existing methods [2,3,4,13] are often task-specific, failing to capture
shared tumor characteristics and limiting their scalability in large-scale clinical
applications. Therefore, developing a unified pan-tumor segmentation model is
essential to enhance diagnostic efficiency and facilitate cross-tumor knowledge
transfer. However, there are several challenges in the pan-tumor segmentation
task, which includes two points: 1) the inherent heterogeneity of tumors across
anatomical regions, i.e., exhibiting remarkable diversity of tumors in shape, tex-
ture, and intensity, which hinders the adaptability; and 2) the pervasive im-
balance in medical datasets, i.e., imbalance distribution of medical datasets for
robust feature learning (particularly for rare tumor types), which makes accurate
tumor segmentation a daunting task.

Recently, inspired by foundation models such as the Segment Anything Model
(SAM) [5] and Contrastive Language-Image Pre-training (CLIP) [6], prompt-
driven approaches [7,8,9,10,14] have shown promising performance in medical
image segmentation [11]. These methods can be broadly categorized into vision-
prompt-driven and text-prompt-driven models. On the one hand, vision-prompt-
driven models [7,8] leverage visual cues (e.g., points, bounding boxes) to guide
segmentation tasks. While effective, these models heavily depend on manual an-
notations and fail to incorporate anatomical and radiological priors, which are
essential for addressing the high heterogeneity of tumors across different anatom-
ical sites. On the other hand, text-prompt-driven methods [9,10,18] align image
and text features within a shared latent space to enhance segmentation across
diverse targets. However, their reliance on predefined text templates limits their
ability to capture the extensive variability in tumor morphology and radiological
presentation, making them less effective in handling domain shifts across anatom-
ical regions. This issue is further compounded by dataset imbalance, resulting
in inadequate feature learning and suboptimal segmentation performance, par-
ticularly for underrepresented tumor types.

To deal with the imbalance distribution of medical datasets, recent works
[10,14,15,12] introduced a query-disentangling and self-prompting model to dis-
entangle queries into organ-level and tumor-specific prompts. While this ap-
proach represents a step forward, they often overlook shared morphological pat-
terns across tumor types that enhance feature learning for rare tumors [16], such
as edge irregularities and contrast variations. Furthermore, striking a balance
between generic and tumor-specific representations still remains challenging,
as models struggle to simultaneously retain generic features across anatomical
sites while preserving unique tumor characteristics. Beyond accuracy, computa-
tional efficiency is another major bottleneck—many approaches either train from
scratch on small datasets, failing to leverage large-scale medical imaging data,
or rely on full-model fine-tuning [17], incurring high computational costs and
over-fitting risks. Therefore, a scalable and adaptive model is urgently needed
to achieve robust and efficient pan-tumor segmentation, addressing both tumor
heterogeneity and dataset imbalance while maintaining computational efficiency.
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Fig. 1. An overview of the proposed MAST-Pro model for pan-tumor segmentation,
with the text and anatomy prompts served as specific priors to enhance tumor repre-
sentation learning. Multi-anatomical radiology images are processed through D-MoE-
enhanced Swin UNETR, where task-dependent routers dynamically select experts to
balance generic and tumor-specific feature learning.

To overcome the aforementioned limitations, we propose MAST-Pro (Mixture-
of-experts for Adaptive Segmentation of pan-Tumors with knowledge-driven
Prompts), a novel framework that integrates Dynamic Mixture-of-Experts (D-
MoE) and knowledge-driven prompts for robust pan-tumor segmentation across
diverse anatomical sites. Specifically, to enhance cross-tumor generalization, text
and anatomical embeddings derived from higher-order medical knowledge are
incorporated as domain-specific priors, guiding the segmentation process. To si-
multaneously capture generic tumor characteristics and preserve tumor-specific
variations, we introduce a dynamic expert selection mechanism, which adaptively
allocates computational resources to improve segmentation performance across
heterogeneous datasets. Furthermore, we employ Parameter-Efficient Fine-Tuning
(PEFT) for multi-anatomical tumor segmentation, significantly reducing com-
putational overhead while enabling efficient adaptation to new tumor types and
anatomical regions. Extensive experiments on assembly of eight public datasets
demonstrate that MAST-Pro achieves performance comparable to State-of-The-
Art (SOTA) methods.

2 Method

In this paper, we propose a novel universal model, called MAST-Pro, for pan-
tumor segmentation. As illustrated in Fig. 1, our approach leverages text (P t

txt)
and anatomical (P t

a) prompts as domain-specific priors, incorporating structured
medical knowledge to improve segmentation performance (Sect. 2.1). Multi-
anatomic radiology images are processed through D-MoE-enhanced Swin UN-
ETR, where task-dependent routers dynamically select a mixture of generic and
tumor-specific experts to optimize feature learning (Sect. 2.2). The extracted
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prompts are fused with image features, contributing to both segmentation re-
finement and mask proposal generation. Notably, to improve training efficiency,
we first pretrain a backbone on large-scale medical datasets, followed by fine-
tuning using PEFT strategy, i.e., up-dating only a small subset of experts within
D-MoE rather than the entire model (Sect. 2.3).

2.1 Prompt Embedding

Text Prompt Embedding Each tumor type exhibits distinct characteristics,
necessitating a structured text representation enriched with medical domain
knowledge. To achieve this, we leverage a large language model (LLM) to gen-
erate concise yet informative text descriptions for each tumor type, following a
standardized template: Ptxt = "This is a [C] in the [O], appearing as a [S] mass
with [E] borders on [M].", where [C], [O], [S], [E], and [M] represent placeholders
for tumor-specific attributes, including tumor type, anatomical location, shape
descriptor, edge characteristics, and imaging modality, respectively. These text
prompts {P t

txt} are then processed using a pre-trained text encoder [6], denoted
as Etxt, to extract meaningful feature representations Et

txt:

Et
txt = Etxt(P t

txt). (1)

Anatomical Prompt Embedding Incorporating anatomical priors en-
hances the model’s ability to recognize tumor characteristics across different
anatomy by providing structured spatial information. Given the strong seg-
mentation performance of existing foundation models in organ segmentation,
we leverage organ masks generated by TotalSegmentator [17] as anatomical
prompts. The anatomical prompt embedding Ea is obtained by encoding {P t

a}
using a pre-trained anatomical encoder [19] denoted as Ea:

Et
a = Ea(P t

a). (2)

2.2 Pan-tumor Adaptive Mixture-of-Experts

Integrated into the Swin UNETR block, D-MoE enhances pan-tumor segmen-
tation by dynamically selecting experts to balance generic and tumor-specific
features. To be specific, The general router Rg captures common features by
selecting experts only from the generic pool Eg and is used for datasets with
mixed tumor types (e.g., AbdomenCT-1K). In contrast, the task-specific router
Rt is used for tumor-specific datasets, and it selects top-k experts from both Et

and Eg, enabling a flexible combination of specific and general knowledge.
Given a segmentation task T t, the router adaptively selects the top-k experts

based on extracted feature representations:

X̄t =

k∑
i=1

Rt
i(X

t) ·
(
Et

i (X
t);Eg

i (X
t)
)
, (3)
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where Xt represents the input feature representation before expert adaptation,
and X̄t is the refined feature representation for task t after processing through
D-MoE. The selection weight Rt

i(X
t) determines the contribution of each expert.

Et
i (X

t) and Eg
i (X

t) denote the tumor-specific and generic experts, respectively.
The expert selection is determined through a gated mechanism, where the

router assigns selection weights via:

R(X) = Softmax(KeepTop-k(X⊤W,k)), (4)
where W is a learnable projection matrix, and KeepTop-k retains the highest-
weighted expert activations:

KeepTop-k(v, k)i =

{
vi, if vi is in top k elements of v,
−∞, otherwise.

(5)

In our implementation, we set k1 = k2 = 4 for Rt and Rg, respectively.
To integrate domain-specific priors into visual representations, the extracted

prompts act as queries Qj , while the image features serve as keys K and values
V within the cross attention mechanism, formulated as:

Fattn = Softmax
(
[Qtxt;Qa]K⊤

√
d

)
V, (6)

where d is a scaling factor for stability. The attention-refined features (Fattn)
are fused with image features (Fimg) and decoded by Swin UNETR:

Fdec = D(Fattn + Fimg). (7)
To further enhance contextual understanding, Fattn is first subjected to

global average pooling (GAP) and then concatenated with text-based prompts.
The combined feature vector is passed through a multi-layer perceptron (MLP)
to generate an initial mask proposal θt [9], where θt comprises weights (W ∈
RT×c×d×h×w) and biases (b ∈ RT ), with T denoting the number of tumor types
and c the number of latent channels. This initial proposal is supervised using
cross-entropy loss with tumor category labels to ensure category-aware represen-
tation learning. Subsequently, the learned θt is used to generate category-specific
mask proposals for each tumor type, which guide the final segmentation output,
while a Dice loss is applied to further refine prediction accuracy and enforce
boundary alignment.

Ffinal = Fdecθ
t, where θt = MLP(GAP(Fattn); Etxt). (8)

2.3 Parameter-Efficient Fine-Tuning (PEFT) Strategy

In D-MoE, task-dependent routers selectively fine-tune low-rank experts to pre-
serve generic tumor characteristics while refining tumor-specific features. Specif-
ically, we employ k2 experts to encode generic tumor features and k1 experts
to capture domain-specific variations. The routers dynamically select the top k
experts from both groups, enabling adaptive feature learning.
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3 Experiment

3.1 Dataset

Following prior work [9], we pretrained our model’s backbone on a diverse col-
lection of large-scale medical imaging datasets, including BTCV [20], CT-ORG
[21], Pancreas-CT [22], CHAOS [23], 3D-IRCADb [24], WORD [26], and AMOS
[27], along with tumor-specific datasets such as AbdomenCT-1K [25], LiTS [28],
KiTS [29], and CT images from the MSD dataset [30]. Importantly, only the
training partitions of these datasets were used during pretraining to prevent
data leakage. Building on this foundation, we curated over 2,000 tumor cases
from eight tumor-specific datasets to train and evaluate a pan-tumor segmenta-
tion model that generalizes across datasets without cohort-specific fine-tuning.
The combined cohort was randomly partitioned into training and testing subsets
using an 8:2 ratio.

To ensure consistency, all CT scans were reoriented, resampled to 1.5×1.5×
1.5 mm3 isotropic spacing, and cropped to focus on tumor-relevant regions.
During training, we extracted 96 × 96 × 96 voxel patches, ensuring balanced
tumor and background sampling. Data augmentation included random 90-degree
rotations and intensity shifting to enhance robustness and generalization.

3.2 Implementation Details

All experiments were conducted using PyTorch on four NVIDIA Tesla H100
GPUs (80GB RAM). The backbone was pretrained for 1,000 epochs, followed by
PEFT applied to D-MoE. Both pretraining and fine-tuning were performed with
identical hyperparameters, utilizing the AdamW optimizer with a base learning
rate of 5× 10−5 and a batch size of 4. Multi-GPU training was performed using
Distributed Data Parallel (DDP) to ensure efficient scalability.

3.3 Comparison with State-of-The-Art Methods

To evaluate the effectiveness of our method, we conducted comparative exper-
iments against SOTA universal medical image segmentation approaches, which
are categorized into baseline methods, vision-prompt-based methods, and au-
tomatic text-prompt-based methods. Specifically, we selected nnU-Net (3D full
resolution) [32] and Swin UNETR [19] as baselines, Med-SAM3D [7], MA-SAM
[31], and SegVol [8] as vision-prompt-based methods, and the Universal Model
[9] and ZePT [10] as automatic text-prompt-based models. All baselines followed
their original training protocols for fair comparison.

Quantitative Comparison Table 1 presents the segmentation performance
across eight datasets, demonstrating that MAST-Pro achieves the highest mean
DSC of 68.71%, and outperforms both vision-prompt-based (e.g., Med-SAM3D,
SegVol) and text-prompt-based (e.g., ZePT, Universal Model) approaches. Com-
pared to the strongest baseline (ZePT), our model improves the average DSC
by 5.2%, highlighting the effectiveness of D-MoE and knowledge-driven prompts
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Table 1. DSC (%) results for multimodal segmentation methods across all datasets.
The best results are bolded. Abbreviations: “M-Li” – “MSD-Liver”, “M-Lu” – “MSD-
Lung”, “M-Pa” – “MSD-Pancreas”, “M-HT” – “MSD-HepaticVessel Tumor”, “M-Co” –
“MSD-Colon”, and “Abd” – “AbdomenCT-1K”.

Method M-Li M-Lu M-Pa M-HT M-Co LiTS KiTS Abd Mean
nnU-Net [32] 60.22 68.54 52.75 69.50 45.07 57.15 65.18 62.85 60.16
Swin UNETR [19] 63.24 66.70 53.24 66.23 42.55 66.79 65.23 64.82 61.10
Med-SAM3D [7] 47.81 24.28 40.26 57.89 48.21 22.32 67.15 - 43.98
MA-SAM [31] 69.16 51.70 31.22 63.57 39.98 57.22 75.91 - 55.53
SegVol [8] 69.07 65.53 54.35 68.75 48.23 62.18 57.74 - 60.84
Universal Model [9] 65.92 67.11 54.72 66.31 42.82 76.07 62.86 66.53 62.79
ZePT [10] 69.58 69.07 53.39 70.65 43.18 79.66 57.83 64.76 63.51
MAST-Pro (Ours) 72.96 72.10 59.34 74.76 46.79 82.12 72.99 68.65 68.71

in enhancing generalization. Our model achieves top performance on six out of
eight datasets, with notable improvements in M-Pa (+4.26%), M-HT (+4.11%),
and LiTS (+2.46%), demonstrating its robustness across diverse tumor types.
Particularly in Liver tumor segmentation (LiTS), MAST-Pro surpasses Med-
SAM3D by 59.8% and SegVol by 19.94%, showcasing its ability to capture
tumor-specific features autonomously. Furthermore, the M-Lu dataset, one of
the smallest cohorts in terms of sample size, serves as a representative "rare tu-
mor" case. On this dataset, MAST-Pro achieves a DSC of 72.10%, outperforming
previous SOTA methods by a large margin (+19.3 vs. Med-SAM3D, +20.6 vs.
MA-SAM, +5.2 vs. ZePT), thereby demonstrating its robustness in data-scarce
scenarios.

Qualitative Comparison Fig. 2 presents qualitative segmentation results,
demonstrating the superiority of our method in capturing tumor boundaries and
preserving structural details. To be specific, our method demonstrates superior
segmentation accuracy, capturing finer tumor details with fewer false positives
and better boundary adherence compared to the competing methods. Partic-
ularly in small or complex tumors (first and second rows), our results closely
matches the ground truth, whereas other models either under-segment (ZePT,
Universal Model) or over-segment (MA-SAM, SegVol) tumors, leading to in-
accuracy. Additionally, in large and irregular tumors (third and fourth rows),
our model produces more accurate contours and reduces misclassification errors,
highlighting its robustness in handling diverse tumor morphology.

3.4 Ablation Study

Table 2 shows the ablation study, evaluating the contribution of each component.
Effect of Knowledge-Driven Prompts Removing all prompts leads to a

significant drop in performance (61.10% mean DSC), underscoring their impor-
tance. Anatomical prompts alone improves segmentation (+2.27% mean DSC),
particularly in M-Li and M-Pa, by incorporating structural priors. Text prompts
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Fig. 2. Qualitative comparisons of the proposed MAST-Pro model (Ours) with other
prompt-driven methods for multi-tumor segmentation. The first column shows the
original CT scans, and the second column presents the ground-truth segmentations.
The segmentation results in rows one to four are liver tumors, kidney tumors, lung
tumors, and colon tumors, respectively.

Table 2. Ablation study on the effectiveness of anatomical prompts (AP), text prompts
(TP), and the D-MoE module. The results are reported in DSC (%).

AP TP D-MoE M-Li M-Lu M-Pa M-HT M-Co LiTS KiTS Abd Mean
× × × 63.24 66.70 53.24 66.23 42.55 66.79 65.23 64.82 61.10
✓ × × 63.45 70.46 56.82 68.92 44.82 72.72 68.44 62.16 63.47
× ✓ × 66.48 68.24 53.42 68.02 42.26 77.03 64.86 67.08 63.42
× × ✓ 67.45 69.21 56.20 66.24 44.25 72.16 63.42 65.13 63.01
✓ ✓ ✓ 72.96 72.10 59.34 74.76 46.79 82.12 72.99 68.65 68.71

alone enhances performance in LiTS but struggles with fine-grained boundaries,
highlighting its limitations in handling tumor variability.

Effect of D-MoE Introducing D-MoE alone improves the mean DSC to
63.01%, particularly benefiting LiTS (+5.37%) and M-Li (+4.21%), demonstrat-
ing its ability to balance generic and tumor-specific features. However, without
domain priors, its effectiveness is constrained in highly variable datasets.

Computational Efficiency To assess computational efficiency, we compare
trainable parameters and GPU memory usage during training. As shown in Table
3, our model requires only 21.04M parameters and the lowest GPU memory,
demonstrating the effectiveness of PEFT in reducing computational overhead
while maintaining high segmentation accuracy.
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Table 3. Comparison of computational cost during training between our and other
methods in terms of training parameters and GPU memory usage.

Method Train Params (M) ↓ Memory Usage (MB) ↓

MA-SAM 363.68 74544.02
SegVol 449.08 19898.00
Universal Model 244.80 9710.55
ZePT 495.10 24705.40
MAST-Pro (Ours) 21.04 8961.30

4 Conclusion

In this paper, we propose MAST-Pro, a novel framework that integrates Dynamic
Mixture-of-Experts (D-MoE) and knowledge-driven prompts for pan-tumor seg-
mentation. Text and anatomical prompts provide domain-specific priors, while
D-MoE dynamically balances generic and tumor-specific feature learning, im-
proving segmentation across diverse tumor types. Additionally, Parameter-Efficient
Fine-Tuning (PEFT) reduces computational overhead without compromising ac-
curacy. Experiments on multi-anatomical tumor datasets show MAST-Pro out-
performs other SOTA methods by 5.20% DSC while reducing trainable param-
eters by 91.04%, demonstrating its effectiveness in accurate, generalizable, and
efficient tumor segmentation.
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