‘ 1is MICCAI paper is the Open Access version, providec
MICCAI :

Anatomical Structure Few-Shot Detection
Utilizing Enhanced Human Anatomy Knowledge
in Ultrasound Images

Ying Zhu', Bocheng Liang?, Ningshu Li%, Lei Zhao*, Xi Li!, Hao Li'(®&,
Fengwei Yang®, and Bin Pu3(®

1 School of Information Science and Engineering, Yunnan University, China
lihao707@ynu.edu.cn
2 Shenzhen Maternity and Child Healthcare Hospital, Women and Children’s
Medical Center, Southern Medical University, China
3 Electronic and Computer Engineering, The Hong Kong University of Science and
Technology, China
eebinpu@ust.hk
4 College of Computer Science and Electronic Engineering, Hunan University, China
5 Department of Mathematics, University of British Columbia, Canada

Abstract. Deep learning-based models have significantly advanced clin-
ical ultrasound tasks by detecting anatomical structures within vast ul-
trasound image datasets. However, their remarkable performance inher-
ently requires extensive training of annotated medical datasets. Few-
shot learning addresses the challenge of limited labeled data for model
training. Currently, few-shot learning in the field of medical image anal-
ysis mainly focuses on classification and semantic segmentation, with
relatively fewer studies on object detection. In this paper, we propose
a novel few-shot anatomical structure detection method in ultrasound
images called TRR-CCM, which consists of Circular Channel Mamba
(CCM) and Topological Relationship Reasoning (TRR) based on hu-
man anatomy knowledge. CCM, as a new Mamba variant, performs
contextual modeling of anatomical structures and captures long- and
short-term dependencies. TRR learns spatial topological relationships
between human anatomical structures to further improve the accuracy
of detection and localization. Experimental results on two fetal ultra-
sound datasets demonstrate that TRR-CCM outperforms 9 state-of-the-
art baseline methods.

Keywords: Few-shot anatomical structure detection - Circular channel
Mamba - Topological relationship Reasoning.

1 Introduction

Deep learning (DL)-based anatomical structure detection methods have been
very successful on several ultrasound tasks such as standard view localization
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[4,14], quality control [8], and diagnosis of structural screening [16,18]. However,
the performance of DL-based models relies on large amounts of annotated data.
In some cases, the acquisition of large datasets is restricted on account of ethical
and privacy regulations. Meanwhile, labeling massive data requires specialized
medical experts, entailing huge labor and effort. As a viable solution to address
data scarcity [12], few-shot learning has shown great potential in the field of
medical imaging and has achieved significant success in tasks such as classi-
fication [6,9,26] and semantic segmentation [20,22]. However, previous studies
have ignored the multi-medical object detection few-shot learning in ultrasound
images.

(b) Contextual
knowledge

Fig. 1. Consistency of two fixed knowledge from human anatomy. (a) Spatial topology
knowledge. (b) Contextual knowledge.

Ultrasound image analysis faces significant challenges due to domain shifts
caused by heterogeneous device parameters (e.g., frequency, gain), operator-
dependent acquisition techniques (probe angle/pressure), and intrinsic noise
artifacts (low contrast, speckle noise) [24], which degrade cross-domain gener-
alization of few-shot learning. Despite the deployment of numerous methods
[15,17,27] for detecting ultrasound structures, the challenges continue to exist.
Nevertheless, the invariant spatial-topological relationships (Fig. 1(a)) and
anatomical context relationships (Fig. 1(b))derived from human physiology
establish a unified prior knowledge framework to compensate for such variations
and improve model robustness. (1) For extracting spatial topological knowledge,
we employ graph reasoning to obtain the spatial topological relationships of the
anatomical structures. Due to the intrinsic properties of human anatomy, there
is significant consistency in the topological representations derived from anatom-
ical structures in ultrasound images, as shown in Fig. 1(a). The highly consistent
topology graph can help the model better understand the image from a global



perspective, providing guidance and constraints for the detection of anatomical
structures. Especially for few-shot object detection, the spatial topology graph
can help the model predict novel classes. (2) We utilize a Mamba-based approach
[3] to extract contextual semantic information (i.e., long- and short-term contex-
tual dependencies) about anatomical structures. As shown in Fig. 1(b), the selec-
tive scanning mechanism of Mamba focuses on extracting core semantics from
long sequences, enhances global context understanding, and boosts semantic
modeling efficiency and accuracy. Furthermore, Mamba reduces sequence mod-
eling complexity to linear via selective state-space models, dynamically filtering
input information to cut parameters while preserving high efficiency. However,
the previous Mamba-based methods focus on capturing spatial correlations and
often neglected channel information [1]. The lack of channel mixing in Mamba
architecture causes stability issues in larger networks [13] and limits its ability
to model global information.

Based on the above analysis, we propose a new few-shot object detection
method (TRR-CCM) in ultrasound images that integrates Circular Channel
Mamba (CCM) and Topological Relationship Reasoning (TRR) for anatomical
structure detection. CCM effectively captures long-range dependencies in the
image with linear computational complexity, ensuring an understanding of the
global context while retaining channel-specific features. In TRR, we propose to
deploy a spatially-aware graph convolutional network to learn the spatial topo-
logical relationships between anatomical structures efficiently and adaptively. In
summary, our contributions can be summarized as follows:

1. We design Circular Channel Mamba to capture both long-range and short-
range dependencies of multiple anatomical structures while retaining crucial
channel information.

2. We propose a Topological Relationship Reasoning that encodes human anatomy
knowledge as graph relations utilizing graph convolution learning the spatial
topological relationships, thereby enhancing the detection performance and
robustness of the model.

3. Extensive experiments were conducted on two fetal ultrasound image datasets,
and results demonstrate that our method outperforms state-of-the-art 9
baseline methods, showing its potential for clinical application.

2 Method

Fig. 2 shows the overview of our proposed method. TRR-CCM consists of Cir-
cular Channel Mamba (CCM) and Topological Relationship Reasoning (TRR),
which divides the base class training phase and fine-tuning phase into two sub-
phases. (1) The features extracted by the backbone network are encoded with po-
sitional information and then fed into CCM to capture long-term contextual de-
pendencies. These visual features are subsequently enhanced by attention mech-
anisms and subjected to a global semantic pool. (2) In TRR, an interpretable
sparse adjacency matrix is first learned from the visual features, retaining only
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Fig. 2. The overall pipeline of the proposed TRR-CCM framework.

the most relevant connections for object recognition. Subsequently, the seman-
tic representations from the global semantic pool are mapped to each region. A
Graph Convolutional Network (GCN) is employed to learn the topological re-
lationships between anatomical structures. (3) Finally, these fusion features are
concatenated from the long- and short-term dependence level and topological
relation level for further prediction.

2.1 Circular Channel Mamba

We design a new Mamba variant called Circular Channel Mamba to extract
short- and long-term contextual dependencies of the anatomical structure. The
former Mamba is a deep learning architecture based on Structured State Space
Models (SSMs). SSMs function as a linear time-invariant system to map a one-
dimensional sequence z(t) € RL to y(t) € RL through a hidden state h(t) € R,
denoted as:

hy = Ahy_1 + Bxy, yr = Chy, (1)
where A = exp(AA) and B = exp(AA)~(exp(AA) — I) - AB. Here, A and B
are continuous-time parameters, while A and B are discrete-time parameters.
Additionally, A is a timescale parameter.

CCM extends the selective SSM mechanism to the channel dimension to cap-
ture inter-channel feature dependencies, and to extract long-term dependencies
and channel information. Specifically, given input tensor X € REXCXHXW e
initially employ 1 x 1 convolutions for cross-channel information aggregation and
feature transformation. Here, B represents the batch size, and C represents the
number of channels. Additionally, H and W represent the height and width of



the feature map, respectively. Then for the multi-channel feature maps output
from the previous layer, each channel is first separated, and convolution oper-
ations are performed on the individual channel feature maps, which are then
recombined, expressed as

N

K-1
X(c,m,n) Xemtinti - Weig (2)
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I
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where X (¢, m,n) is the value at position (m,n) in the c-th channel of the output
feature map, X y4in+; is the value at position (m-+i,n+j) in the c-th channel of
the input feature map and W, ; ; is the weight at position (i,j) of the convolution
kernel corresponding to the input channel c. Then reshape X to X’ € REXCxT
where T = H x W, and transpose to X7 € RBXT*C We encode the global
context of X7 through:

X = Mamba(LN(XT)), (3)

where LN stands for Layer Normalization. The final feature X is transposed
and reshaped back to X/ € REXCXHXW Then, the output features are added
to the original features and re-input into the CCM:

Xow = COM(X + X). (4)

In our experiment, we employ a series of stacked CCM blocks to enhance the
short- and long-term feature extraction capability.

2.2 Topological Relationship Reasoning

Topological relationship reasoning assists the model in conducting structured
reasoning based on spatial topological knowledge. First, learn sparse matrices
from visual features. We model an undirected region-to-region graph G, repre-
sented as G = (N, E). Here, each node in N corresponds to a region proposal,
and each edge e; j € £ represents the relationship between two nodes. We trans-
form visual features f = {f;}}¥.,, {f;} € R? into the latent space Z by non-linear
transformation denoted by

Zi :(b(f)al: 1723"'3Na (5)

where z; € RL, L is the dimension of the latent space and ¢(.) is a non-linear
function. Let Z € RV*L be the collection of normalized {z;}¥ , the adjacency
matrix can be calculated as £ = ZZT. To alleviate the computational burden,
for each node, only the K most relevant nodes are selected as neighboring nodes:
Neighbour(i) = TOPy (&1, Ei2y -, EiN)-

Then, the semantic information from the global semantic pool is assigned
to every region. The global semantic pool W € RE*(P+1) ig obtained from
the preceding classification layer. Meanwhile, the classifier and softmax function
yield classification scores for the region proposals, denoted as S € RV*¢. Here,



C denotes the number of classes, and D the feature dimension of the classifier
input. Thus, the regional representations of the nodes X € RNX(P+1) can be
computed as a matrix multiplication: X = SW.

To enable the GCN to model and interact with spatial topological infor-
mation, we employ a polar coordinate function P(i,j) = (d, ) to construct the
topological information. This function returns a two-dimensional vector that cal-
culates the angle and distance between the centers of two region proposals (z;, y;)

and (z;,y;), e.g., d = \/(ch — xj)2 + (y;i — yj)2 and angle § = arctan(;’j:if;).

Then pass this topological information into a Gaussian kernel to generate the
relationship weights between adjacent nodes. Formally, given a graph node i, the
information propagation and aggregation operation can be expressed as follows:

f?n,(i) - Z Wm(P(iaj))xjeija (6)

JjENeighbour (i)

o (P ) = exp(= 5 (P(i, ) = ) S (Pl =), ()

where Neighbour(i) denotes the neighborhood of node i and w,, is the m-th
Gaussian kernel, u,,, and 3/, are learnable 2 X 1 mean vector and 2 x 2 covariance
matrix. For each node i, fm(z) is computed as a weighted sum of the neighboring
semantic representations X, where the Gaussian kernel w,, (.) encodes the spatial

information of the regions. Then fm(z) is concatenated over K kernels.

3 Experiments

3.1 Datasets

We employ two fetal ultrasound image datasets, transthalami (TT) [7] and three
vessels and trachea (3VT) [18], for model evaluation. The TT dataset was sourced
from Shenzhen Maternal and Child Health Hospital through various manufac-
turers (including Samsung, SonoScape, and Philips). The range of gestational
weeks covered in these datasets spans from 18 to 32 weeks. TT contains 726 fetal
brain US images with seven anatomical structure categories. 3VT contains 913
fetal heart US images with six anatomical structure categories. Moreover, both
datasets were divided into training, validation, and test sets following a 7:1:2
ratio. Fig. 3 shows examples of original and labeled data in two datasets.

3.2 Implementation Details

We use DeFRCN [19] as the base network and Faster R-CNN as the base de-
tector. ResNet101 is taken as the backbone and we use the weights pre-trained
on ImageNet in initialization. We set the number of layers of the GNN to 2, the
number of neighboring nodes for each node to 32, and the number of Gaussian
kernels to 10. During training, our model is trained using SGD optimizer with
a momentum of 0.9 and a weight decay of 0.00005. The learning rate is set to



Fig. 3. Examples of two datasets.

0.01, and the batch size is set to 8. The metrics for evaluating the overall net-
work performance are the mean average precision at IoU=0.5 (mAP@50). We
take nine state-of-the-art FSOD methods as baseline methods to evaluate the
effectiveness of the proposed method, including TFA [23], FSCE [21], DeFRCN
[19], DCFS [2], MFDC [25], VFA [5], ICPE [10], DiGeo [11], and TKR [7].

3.3 Results

Table 1. Detection results for the TT dataset under the three settings. Bold and
underlined numbers denote the 1st and 2nd scores.

Split 1 Split 2 Split 3
1 2 3 &5 10| 1 =2 3 5 10]1 2 3 5 10
TFA |63.4 64.4 63.9 64.2 65.3|66.3 66.0 63.7 62.9 63.8|67.2 70.2 71.5 69.3 70.6
FSCE [64.8 64.1 49.0 53.0 60.0|57.8 64.0 47.7 54.6 65.7|64.5 71.2 44.4 50.1 59.9
DeFRCN|67.4 68.6 69.7 69.6 72.8|73.9 72.5 73.9 77.1 78.6|70.8 72.0 71.4 72.9 76.6
DCFS [69.1 70.7 71.1 73.2 74.8|76.8 78.1 80.4 80.2 82.0|70.6 73.6 75.0 75.9 75.4
MFDC |67.7 69.7 73.3 77.7 80.8|76.3 76.7 76.2 78.0 83.1|72.2 74.8 73.8 75.3 81.1
VFA |53.7 58.7 64.1 51.6 51.8|64.4 48.4 65.6 49.8 41.2|51.9 67.4 52.9 52.7 52.9
ICPE |71.1 68.4 65.6 66.7 71.1|65.7 65.1 65.8 66.4 65.3|70.0 67.2 68.3 68.3 66.9
DiGeo [64.6 63.5 68.5 70.5 69.5|69.6 67.9 71.0 70.7 75.4[70.8 67.9 70.1 72.3 76.1
TKR |69.6 70.0 73.1 76.6 76.7|81.0 82.4 82.0 83.2 87.8|76.0 75.6 77.5 79.5 82.3

Ours [71.3 71.8 75.8 79.8 81.0|82.8 84.5 86.3 86.5 91.0|79.4 78.3 77.9 83.3 86.8

Models

As shown in Table 1, our work significantly outperforms the existing compet-
itive baseline methods in each few-shot setting on the TT dataset. In the 5-shot
case, our method surpasses the second-best method by 2.1%, 3.3%, and 3.8%
on data splits 1, 2, and 3, respectively. In the 3-shot case, our method exceeds
the second-best method by 2.5% and 4.3% on data splits 1 and 2, respectively.
Notably, in the 10-shot case of data split 3, our method achieves a substantial
improvement of 4.5% compared to the second-best method. It can be observed
that our method improves on this dataset in most cases with the number of shots
increasing.

Table 2 presents the results of the 3VT, demonstrating that our method
outperforms the baseline in most cases, with the best performance on data split



3. In the 5-shot case, our method is superior to the second-best method by 5.2%,
2.4% and 1.3% on data split 1, 2 and 3, respectively. In the 10-shot case, our
method outperforms the second-best method by 3.4% and 3.1% on data split 1
and 3, respectively. As the number of shots increases, our method also improves
performance in most cases.

Table 2. Detection results for the 3VT dataset under the three settings. Bold and
underlined numbers denote the 1st and 2nd scores.

Split 1 Split 2 Split 3
1 2 3 5 10 1 2 3 5 10 1 2 3 5 10
TFA 56.3 61.7 61.8 62.2 62.7(60.4 62.4 62.3 60.2 61.7|62.7 62.7 63.3 64.7 67.4
FSCE |43.3 54.8 33.0 35.3 42.8|53.6 54.6 38.3 35.5 42.7(47.2 53.8 37.7 36.9 42.7
DeFRCN|57.8 58.4 59.2 57.4 60.5|58.5 59.2 59.5 63.2 66.2|62.3 63.5 65.2 66.2 67.7
DCFS [58.9 58.0 61.2 61.1 63.9(61.3 62.2 64.3 68.2 68.8|62.9 64.0 65.0 66.3 68.7
MFDC [61.3 62.9 65.3 66.3 70.2(62.5 62.9 62.1 66.2 68.9|63.5 64.8 67.7 70.2 73.8
VFA |46.5 52.0 52.1 56.7 65.4|46.4 48.9 49.3 53.7 60.1|33.4 48.5 50.8 55.7 60.6
ICPE |[61.1 61.7 61.8 60.3 61.3|57.8 57.7 59.6 60.7 60.8|58.3 58.6 58.4 58.0 57.3
DiGeo |61.0 60.5 62.6 66.3 67.1|61.7 60.9 62.8 61.5 62.3|61.9 63.1 63.6 63.6 65.8
TKR [63.9 66.0 68.8 65.9 72.2(63.1 64.0 64.8 70.0 73.0|64.4 64.6 70.1 72.0 74.5
Ours [64.1 66.1 69.5 71.5 75.6|62.5 65.5 64.7 72.4 73.2|64.8 66.5 71.2 73.3 77.6

Models

3.4 Ablation

Table 3 shows the ablation studies of the CCM and TRR modules on data split
1 of the TT and 3VT datasets. As shown in Table 3, TRR outperformed CCM
on the 3VT dataset, while CCM outperformed TRR on the TT dataset. Both
components improve our model’s performance, validating the effectiveness of
TRR-CCM. Specifically, the addition of CCM only achieves a significant im-
provement over the baseline method by 1.4% to 9.4% on TT dataset, and 5.9%
to 12.1% on 3VT dataset, respectively. Only by adding the TRR, it outperforms
the baseline on most of the shots of T'T, while the 3VT dataset sees an improve-
ment of over 5.7% in all cases. When both CCM and TRR are included, our
method boosts by 3.9%, 3.2%, 6.1%, 10.2%, and 8.2% in the cases of 1, 2, 3, 5,
and 10 shot on data split 1 of TT, respectively.

Table 3. Ablation of each component of split 1.

TT 3VT

1 2 3 5 10| 1 2 3 5 10
67.4 68.6 69.7 69.6 72.8|57.8 58.4 59.2 57.4 60.5
68.8 72.3 75.1 79.0 79.4|63.7 64.3 66.2 67.6 72.6

68.5 68.7 70.2 69.9 70.1[63.5 65.7 67.2 68.0 71.6
71.3 71.8 75.8 79.8 81.0/64.1 66.1 69.5 71.5 75.6

Method |CCM TRR

Baseline

Ours

N X N[
NN X%




4 Conclusion

In this work, we propose a novel few-shot medical object detection method in
ultrasound images called TRR-CCM. CCM excels in capturing long- and short-
term dependencies while simultaneously retaining critical channel-specific infor-
mation, thereby enriching the holistic comprehension of the anatomical struc-
ture’s contextual nuances. TRR learns topological knowledge of human anatomy
with a high degree of consistency to assist models in more accurate localization
and classification. Experimental results on two datasets demonstrate the supe-
riority of TRR-CCM, which shows the potential of our method for structure
detection in clinical applications.
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