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Abstract. Brain positron emission tomography (PET) has been widely
used for the diagnosis of various neurodegenerative diseases. To assist
physicians, convolutional neural networks (CNNs) and transformers have
been explored for prediction of diseases based on brain PET images.
While these models show promising performance, they are designed to
process the entire image, which facilitates shortcut learning by extract-
ing irrelevant features. To alleviate shortcut learning, we observe that
brain images share the same structure, and regions of interest (ROIs)
can be defined for relevant regions. In this regard, we propose Pyra-
midal Region Graph Neural Network (PRGNN), which employs a 3D
convolutional backbone to learn multi-level feature representations and
constructs nodes that correspond to anatomical ROIs. Using ROI-based
node embeddings, PRGNN extracts metabolic patterns in functionally
relevant regions and performs explicit inter-regional reasoning. We eval-
uate PRGNN on classifying 18F-fluorodeoxyglucose (FDG) and amy-
loid PET, outperforming models based on CNN, transformer, and GNN.
Moreover, interpretability analyses highlight disease-relevant regions that
align with clinical observations, demonstrating PRGNN’s potential for
improving diagnostic performance and reliability. Code is available at
https://github.com/Treeboy2762/PRGNN.

Keywords: Classification · Graph Neural Network · Positron Emission
Tomography · Explainable AI.

1 Introduction

The brain undergoes distinct pathological and metabolic changes during the
progression of neurodegenerative disorders, driven by disease-specific molecular
pathology and organizational patterns [1]. In this regard, positron emission to-
mography (PET), such as 18F-fluorodeoxyglucose (FDG) and amyloid PET, has
gained significant attention for its ability to detect disease-specific abnormalities
even before structural changes become evident on MRI [2, 3]. Given the critical
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role of early and accurate diagnosis in improving patient outcomes, various clas-
sification models have been explored for PET-based disease classification, aiming
to extract meaningful patterns and enhance diagnostic precision.

Among them, CNNs and transformers have demonstrated strong performance
in PET-based disease classification [4–7]. However, these models unintentionally
learn shortcut features, spurious correlations that boost accuracy in training but
do not reflect true pathology [8]. In particular, traditional image classification
models process all pixels of an image, inadvertently referring to irrelevant fea-
tures or background context as shortcuts. This redundancy degrades the model’s
ability to generalize to images in the unseen domain, especially when limited data
are available to learn features that robustly distinguish the classes.

Alternatively, graph neural network (GNN)-based architectures are uniquely
suited to incorporate anatomical structure into the model, addressing the limi-
tations of CNNs and transformers. Traditional CNNs utilize a grid image input
and use fixed local neighborhoods, which limit their capacity to capture long-
range relationships [9]. On the other hand, transformers do capture long-range
interactions using attention, but they still treat the image as an unstructured
sequence of patches, and they require larger datasets for effective training [10].
GNNs, by contrast, can be designed to treat anatomical regions as nodes in
a graph with edges encoding relationships. To elaborate, by integrating CNN-
based feature extraction that captures detailed local patterns within each region
with graph operations that connect these regions, GNNs can combine the ad-
vantages of CNN’s localized feature extraction and the ability of GNN to model
long-range dependencies.

A few works have incorporated anatomical knowledge into brain image classi-
fication [7, 11–13]. For instance, BrainGNN [11] groups nodes and uses an MLP
for classification but depends on explicit edges from modality-specific sources
(e.g., fMRI functional connectivity), which are harder to define in PET im-
ages. Another study [12] uses separate CNNs for each region of interest (ROI),
standardizing their dimensions before feature extraction and subsequent GNN
processing. Although this captures local features, it overlooks the multiscale
hierarchical maps typically produced by backbone networks. In contrast, an-
other work [13] constructs graphs based on ROI data and employs a GNN with
Transformer-guided Adaptive Diffusion (GTAD) for Alzheimer’s classification;
however, it relies on averaged SUVR values within ROIs, which do not fully
capture the complex metabolic patterns in PET images.

To address these issues, we propose the Pyramidal Region Graph Neural
Network (PRGNN), a novel framework that integrates the strengths of 3D CNN
and GNN to capture both local feature hierarchies and global structural rela-
tionships in medical imaging data. PRGNN uses an ROI-based node embedding
method to define nodes in the feature map extracted by a CNN backbone. By
constraining the model to extract features from anatomically relevant regions,
PRGNN alleviates the shortcut problem. Moreover, by using graph convolution
between nodes, PRGNN allows the model to utilize long-range dependencies,
modeling intricate relationships of the brain. Our contributions are as follows:
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Fig. 1. Model Architecture of PRGNN. A 3D CNN backbone extracts hierarchical
features from PET images, which are then embedded to node representations using
ROIs of automatic anatomical labeling. The node embeddings are then processed by
grapher modules and fed into a classifier head for prediction.

• We present PRGNN, which integrates a 3D CNN backbone with a GNN to
capture both local hierarchical features and global anatomical relationships
in brain PET images.

• We provide comprehensive experimental validation on FDG and amyloid
PET datasets, demonstrating that PRGNN outperforms existing classifica-
tion approaches in brain PET classification. We provide an ablation study
to validate that graph convolutions between regions improve performance.

• We show that PRGNN makes an interpretable diagnosis by summing up logit
contributions from each region. We visualize the average node contributions
of PRGNN and confirm the clinical relevance of the model predictions.

2 Methodology

Our PRGNN (Fig. 1) is composed of the following components: 1) 3D CNN
backbone to extract hierarchical features, 2) node embedder to project CNN
features to node representations using anatomical ROIs, 3) grapher block to
perform graph convolution between nodes, and 4) classifier head to perform
final classification. We trained three versions of PRGNN with different model
sizes: tiny (Ti), small (S), and medium (M). The details are provided in Table 1.
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Table 1. Detailed descriptions of parameters for PRGNN. C : feature dimension, K :
number of neighbors in GCN, N : number of nodes, H ×W ×D: input image size. ‘Ti’
stands for tiny, ‘S’ for small, and ‘M’ for medium.

Stage Output size PRGNN-Ti PRGNN-S PRGNN-M
Stem H

2
× W

2
× D

2
Conv7× 7× 7 Conv7× 7× 7 Conv7× 7× 7

Stage 1 N

[
C = 48

K = 9

]
×2

[
C = 72

K = 9

]
×2

[
C = 96

K = 9

]
×2

Downsample H
4
× W

4
× D

4
Conv3× 3× 3 Conv3× 3× 3 Conv3× 3× 3

Stage 2 N

[
C = 48

K = 9

]
×2

[
C = 72

K = 9

]
×2

[
C = 96

K = 9

]
×2

Downsample H
8
× W

8
× D

8
Conv3× 3× 3 Conv3× 3× 3 Conv3× 3× 3

Stage 3 N

[
C = 96

K = 9

]
×6

[
C = 144

K = 9

]
×6

[
C = 192

K = 9

]
×16

Downsample H
16

× W
16

× D
16

Conv3× 3× 3 Conv3× 3× 3 Conv3× 3× 3

Stage 4 N

[
C = 240

K = 9

]
×2

[
C = 288

K = 9

]
×2

[
C = 384

K = 9

]
×2

Head 1 Pooling & FC Pooling & FC Pooling & FC

2.1 Hierarchical feature extraction

Let X ∈ RC×H×W×D represent the 3D PET input image, where C is the number
of channels (e.g., 1 for a single PET image), and H,W,D represent the spatial
dimensions. A CNN backbone is used to extract four stages of hierarchical feature
map, denoted F(s) ∈ RCs×Hs×Ws×Ds , where s ∈ {1, 2, 3, 4} represents the four
stages of the CNN. Each stage is downsampled by a factor of 2.

2.2 Node Embedder

To generate node embeddings from the hierarchical feature map, we use Au-
tomatic Anatomical Labeling (AAL) atlas that provides 116 unique brain re-
gions [14]. To prevent overfitting, we merge AAL labels along gyral boundaries,
removing arbitrary anterior-posterior splits within the same gyrus. Moreover, we
merge fragmented areas such as the cerebellum. The resulting atlas had total of
56 ROIs. We then one-hot encode the merged ROI map and downsample it via
bilinear interpolation to match the resolution of the hierarchical feature map.

Let E(s) ∈ RCs×N be the node embeddings and R(s) ∈ RN×Hs×Ws×Ds be the
downsampled AAL atlas, where N is the number of ROIs. The node embedding
process can be written as:

E
(s)
i =

∑
h,w,d

R
(s)
i,h,w,d · F (s)

:,h,w,d for each node i ∈ {1, ..., N}. (1)

This represents a weighted sum of the feature map values, where the ROI mask
R acts as a set of weights to aggregate features from relevant spatial locations.
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2.3 Grapher

To construct the graph G = G(E), we follow the scheme proposed in Vision
GNN [15]. For each node embedding vector Ei, we identify its K-nearest neigh-
bors N (Ei) and establish directed edges ξij from Ei to every Ej ∈ N(Ei). The
resulting graph is then processed through a Grapher block, which serves as the
core computational unit for extracting graphical features. The Grapher block
consists of two main components: a graph convolution (GC) operator and a
feed-forward network (FFN). First, GC operator updates node representations
by aggregating feature information from their neighbors. This process is defined
as

E′ = σ(G′(EWin))Wout + E, (2)

where Win and Wout are the weights of fully-connected (FC) layers, G′ is the GC
operator, and σ is the activation function. Specifically, we employ max-relative
graph convolution [16] for the aggregation step, followed by update operation to
merge the aggregated features within the GC operator:

E′
i = σ

((
Ei ⊕ max

Ej∈N (Ei)
(Ei − Ej)

)
Wupdate

)
, (3)

where Wupdate is the learnable weight of the update operation. Next, to mitigate
over-smoothing and enhance the feature transformation capacity, we apply a
feed-forward network comprising two FC layers:

E′′ = σ(E′W1)W2 + E′, (4)

where W1 and W2 are the weights of FC layers, and the bias term is omitted.
By combining the GC operator with FFN, the grapher block effectively captures
and transforms graph-structured information.

2.4 Classifier head

Before passing the node embeddings to an FC layer, we apply average pooling
across the channels to generate final node embeddings of shape N, where N
represents the number of ROIs—different from vision GNN in which pooling is
performed across the nodes. This way, we can uniquely isolate the contributions
of each node for the final prediction. The pooled embeddings are then fed into
an FC layer to predict the final label.

3 Experiments

Dataset. We evaluated the performance of the proposed PRGNN on two tasks:
(1) classification of FDG PET images into normal condition (NC), Alzheimer’s
disease (AD), Lewy body dementia (LBD), and progressive supranuclear palsy
(PSP), which are representative conditions that can be differentiated using FDG
PET; (2) classification of amyloid positivity in amyloid PET images. For FDG
classification, 234 FDG PET images were retrospectively collected internally,
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Table 2. Comparison of model performance for FDG and FBB classification tasks.

Classifier Params
(M)

FLOPs
(G)

FDG FBB
Acc. AUC F1 Acc. Sens. Spec.

ResNet-18 [20] 33.2 106.5 88.2 97.9 88.3 96.2 97.7 94.6
ResNet-50 [20] 46.2 138.3 85.9 96.9 85.9 97.2 97.2 97.3
M3T [6] 27.0 615.4 84.5 95.6 84.5 96.2 97.7 95.7
AAGN [7] 1.5 505.4 85.9 96.7 85.8 97.2 97.7 96.8
ViG-Ti [15] 12.4 5.3 84.5 96.1 84.5 95.5 95.8 95.2
ViG-S [15] 17.6 9.9 86.3 96.6 86.4 95.5 95.3 95.7
ViG-M [15] 39.0 16.8 87.3 96.5 87.3 96.5 97.2 95.7
ViG-B [15] 68.5 29.6 88.4 97.3 88.4 97.0 96.2 97.9
PRGNN-Ti (ours) 5.1 5.1 91.7 98.5 91.7 96.5 95.8 97.3
PRGNN-S (ours) 8.6 9.6 91.9 98.4 91.9 96.7 96.2 97.3
PRGNN-M (ours) 19.7 15.9 92.6 98.6 92.6 97.5 96.7 98.4

consisting of 37 NC, 71 AD (42 MCI, 29 Dementia), 71 LBD, and 55 PSP cases
(mean age ± SD (in years): NC, 62 ± 15; AD, 71 ± 8; LBD, 66 ± 9; PSP,
68 ± 6; sex distribution (in % female): NC, 62%; AD, 69%; LBD, 35%; PSP,
38%). In addition, 198 FDG PET images were collected from Alzheimer’s Disease
Neuroimaging Initiative (ADNI), which comprises 137 NC and 61 AD patients.
AD patients in the ADNI cohort were confirmed amyloid positive. For amyloid
positivity classification, 399 18F-florbetaben (FBB) PET images were collected
internally, comprising 186 amyloid negative and 213 positive cases.

Labeling of the in-house dataset was performed according to predefined cri-
teria [17–19], and all images were visually verified by two physicians. All PET
images were spatially normalized to the MNI space and resampled to 2 mm
isotropic voxels using SPM. The intensity of the images was normalized using
the 99.9th percentile.

Baselines. As baselines, we categorized the models into three groups: 1) Con-
volutional models: ResNet-18 and ResNet-50 [20] were selected for compari-
son with standard convolutional neural networks. 2) Attention models: For
comparison with attention models, we evaluated M3T [6], which efficiently inte-
grates CNN and Transformer for 3D medical image classification. Additionally,
we included AAGN [7], which incorporates an anatomy-aware squeeze-and-excite
mechanism to extract region-specific features from brain MRI scans. 3) GNN
models: Vision GNN [15] was used as a representative model for comparison in
GNN-based image classification.

Implementation Details The model was trained using the AdamW optimizer
with an initial learning rate of 10−4 and cosine annealing learning rate scheduler.
The training was performed for 100 epochs using Cross-Entropy loss with a batch
size of 8 on two NVIDIA RTX A6000 48GB GPU. The hyperparameter K was
chosen as 9 after empirical tuning from 3 to 12.
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Table 3. Top ROIs for disease prediction. For each disease category, we report
the top five ROIs (nodes) with the highest average logit contributions from the final
FC layer. We only include cases where the predicted label matches the ground truth.

AD LBD PSP

Region Logit Region Logit Region Logit

Lt. Thalamus 3.17 Rt. Lingual 2.66 Lt. Putamen 4.00
Lt. Sup. Parietal 2.66 Lt. Cuneus 2.14 Lt. Sup. Parietal 2.05
Rt. Caudate Nucleus 1.98 Lt. Thalamus 2.08 Lt. Inf. Parietal 1.82
Lt. Sup. Temporal 1.21 Lt. Mid. Cingulate 2.03 Lt. Thalamus 1.37
Lt. Precuneus 1.19 Lt. Lingual 1.28 Lt. Mid. Cingulate 0.88

Fig. 2. Visualization of model inference. The “Mean” map displays the average
across the test dataset, while the “Rep” map shows the activation of a representative
image, whose FDG PET image is displayed in the left. These maps, derived from the
final pooled node embeddings weighted by the fully-connected layer, are projected onto
the AAL atlas to highlight region-specific contributions. For comparison, Grad-CAM
results from ResNet-18 are visualized.

3.1 Evaluations

We followed standard 5-fold cross-validation setup, but performed an additional
stratified 8:2 for train/val split within each training set. Accuracy (Acc.), Area
under the receiver-operating characteristic curve (AUC), and F1 Score (F1) are
reported for FDG classification, while sensitivity (Sens.) and specificity (Spec.)
are reported in lieu of AUC and F1-score for FBB classification.
Qualitative Results. Table 2 presents the performance comparison of our
PRGNN models against various baselines for FDG and FBB classification tasks.
Our PRGNN-M model achieved the highest accuracy (92.6%) and AUC (98.6%)
for FDG classification, outperforming ViG-B, the best-performing baseline. For
FBB classification, PRGNN-M also attained the highest accuracy (97.5%) and
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Table 4. Ablation study. Classification accuracies for truncated CNN backbones
across four stages with and without node embedding-based graph convolution (GC).
Stage 4 with GC corresponds to our PRGNN-M model.

Stage 1 Stage 2 Stage 3 Stage 4

Without GC 44.2 61.4 75.2 89.3
With GC 82.4 83.3 84.5 92.6

specificity (98.4%), demonstrating superior robustness. Despite having signifi-
cantly fewer parameters and lower computational cost compared to CNN-based
models like ResNet-50 and transformer-based variants, our PRGNN models con-
sistently achieved better classification performance, highlighting the effectiveness
of our graph-based approach.
Model Interpretation. For interpretation of our model, we visualize node con-
tribution, which is a measure of how much each node (ROI) contributes to the
final prediction. In our approach, the model’s final pooled node embeddings are
multiplied by the following FC weights for each class to compute node contri-
bution scores. These scores are then aggregated over all samples and folds. For
a specific class (e.g., AD), the average contribution of each node (ROI) is calcu-
lated and mapped to the corresponding regions of the AAL atlas, as visualized
in Figure 2. In addition, we provide the Grad-CAM visualization of the ResNet
model for comparison of the visualization.

The visualization of node contributions closely aligns with characteristic FDG
uptake patterns for each disease, highlighting the parietal and temporal regions
in AD, the occipital region in LBD, and both the putamen and superior parietal
regions in PSP. In contrast, while Grad-CAM analysis does provide relevant
activations, the activation maps are coarse and do not explicitly indicate how
much the activated areas contributed to the logits of the final prediction.

The top nodes selected by PRGNN for each class have been summarized
in Table 3. Regions such as superior parietal and superior temporal exhibited
high logit contribution for AD prediction [21], lingual and cuneus for LBD [22],
and putamen and parietal for PSP [23]. Interestingly, thalamus appeared among
the top five regions, which was also selected for AD classification in a previous
work [7, 24].

3.2 Ablation Study

We evaluated our node embedding-based graph convolution (GC) across CNN
stages with a seven-step ablation: four backbone-only models (Stages 1–4) fol-
lowed by each stage augmented with GC. Table 4 reports the resulting accuracies,
with Stage 4+GC (PRGNN-M) achieving the best performance. In every stage,
GC consistently improved classification, highlighting the value of region-specific
feature aggregation.
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4 Conclusion

We propose PRGNN, a multi-scale and anatomy-aware graph neural network
that integrates hierarchical feature extraction and graph-based modeling for
brain PET image classification. Our approach effectively captures both local
metabolic patterns and global anatomical relationships, outperforming existing
CNN, transformer, and graph-based models in FDG and FBB PET classifica-
tion. The interpretability analysis demonstrates that PRGNN identifies disease-
relevant brain regions, validating the node-based approach for model interpreta-
tion. Future work will explore incorporating additional imaging modalities and
refining the graph structure to further enhance diagnostic performance.
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