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Abstract. Medical image segmentation, a critical task in medical im-
age analysis, plays a key role in assisting clinical diagnostic workflows.
However, traditional fully supervised learning methods for segmentation
require large, high-quality annotations from expert physicians, which is
resource-intensive and time-consuming. To mitigate this, scribble super-
vised segmentation approaches use simplified annotations to reduce an-
notation costs. Nevertheless, the simplistic nature of scribble annotations
limits the model’s ability to accurately distinguish foreground anatom-
ical structures from the background and differentiate between various
anatomical classes. This limitation results in low accuracy in capturing
foreground morphology and hinders the model’s generalization ability.
To address this, we propose an Enhanced Foreground Feature Discrimi-
nation Network (EFFDNet) that better leverages semantic information
in scribble annotations to improve the network’s foreground discrimina-
tion ability. EFFDNet introduces an innovative Foreground-Background
Separation Loss (FBSL), enhancing the model’s ability to distinguish
between foreground and background features, and improving the mor-
phological accuracy of foreground anatomical region recognition. Addi-
tionally, we propose a new Foreground Augmentation with Diverse Con-
text (FADC) strategy to further enhance the network’s attention on the
foreground and increase training sample diversity, mitigating overfitting
and improving generalization. We validate our approach through sys-
tematic experiments on two publicly available datasets, demonstrating
significant improvements over existing methods. The code is available at:
https://github.com/Aurora-003-web/EFFDNet.

Keywords: Segmentation - Scribble supervised segmentation - Deep
Learnng - Medical Imaging.

1 Introduction

Medical image segmentation [24,26] is essential for clinical diagnosis and re-
search, helping identify anatomical and pathological structures in medical im-
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Fig. 1. Ilustration of scribble-supervised segmentation and its implied foreground-
background semantics: (a) Image; (b) Scribble; (c) Segmentation; (d) Foreground-
background semantics, where the blue area contains the foreground region and the
yellow area contains the background region.

ages. The segmented outcomes can aid clinicians in decision-making and disease
evaluation, advancing medical research. However, deep learning-based fully su-
pervised segmentation typically requires large, accurately annotated datasets,
often involving time-consuming and labor-intensive manual annotations by ex-
perts, especially with the rise of large-scale models [35]. Weakly Supervised
Learning (WSL) addresses this issue by simplifying the annotation process with
alternative labeling strategies such as scribbles [3,17, 34, 16], bounding boxes |6,
21, 25, 32], point labels [33,23,4, 28, 31], and image-level labels [1, 12, 36,9, 7, 8],
thus reducing the complexity and labor of annotation. We specifically explore
scribble supervision (as shown in Fig. 1 (b)), where rough sketches of the tar-
get organ or tissue is used to guide the network training, thus simplifying the
annotation while still providing some anatomical details.

Recently, many methods for deep learning-based scribble-supervised segmen-
tation have emerged. Among them, some methods treat scribble annotations as
seed regions and propagate the information to the unannotated regions. For
example, Lin et al. [17] proposed a graphical model optimization method to en-
hance segmentation by propagating scribble information using graphical model.
Vernaza et al. [30] developed a Differentiable Random Walk-based [10] label
propagation algorithm for better generalization. Can et al. [3] introduced an it-
erative training framework with Conditional Random Field (CRF) optimization
to improve the performance. On the other hand, some methods treat scribble an-
notations as sparse annotations with partial pixel-level labels, leveraging them
through methods such as partially cross-entropy (pCE) loss, and further de-
veloping various strategies to enhance segmentation performance. For example,
Valvano et al. [29] presented Multi-Scale Adversarial Attention Gates, incorpo-
rating adversarial signals for precise localization. Zhang et al. [34] optimized
segmentation with mix augmentation and cyclic consistency constraints. Luo
et al. [20] introduced a dual-branch network and dynamic mixed pseudo-label
supervision to address the issue of the model refusing to update. Li et al. [16]
combined CNN and Transformer features and proposed an Attention-guided
Class Activation Map (ACAM) branch to improve segmentation performance.

Although the aforementioned methods have been proposed, we argue that
existing methods overlook the rich semantic information embedded in scrib-
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bles, where experts often unknowingly incorporate prior knowledge of anatom-
ical structures. Merely treating scribble annotations as initial seed regions or
sparse pixel-level annotations, without exploiting the underlying rich informa-
tion, often fails to provide sufficient details for networks to effectively sepa-
rate foreground anatomical structures from the background, distinguish between
different anatomical classes, or accurately identify the morphology of struc-
tures. Through observation, we find that scribbles inherently contain foreground-
background semantics. Specifically, we find that regions with foreground-class
scribbles tend to contain target anatomical structures, while regions without
them tend to contain non-target areas, as shown in Fig. 1 (d). Exploiting this
implicit foreground-background semantics can better guide network training and
improve performance. In light of this observation, we introduce a novel loss func-
tion—Foreground-Background Separation Loss (FBSL)—which aims to
maximize the separability of foreground and background features within the fea-
ture space, enhancing the network’s ability to discriminate foreground anatom-
ical structures. This further improves the morphological accuracy of the target
areas and the clarity in distinguishing between different classes. Moreover, to fur-
ther enhance the network’s capability in recognizing foreground, we propose a
novel Foreground Augmentation with Diverse Context (FADC) strategy.
This strategy randomly substitutes foreground regions from different samples,
increasing the sample diversity of foreground regions in various contexts (i.e.,
different backgrounds), which boosts the network’s sensitivity to foreground fea-
tures and improves the diversity of training samples. Additionally, by addressing
overfitting—a common challenge in weakly supervised medical image segmenta-
tion (WSMIS)—FADC leads to a significant enhancement in performance.

In summary, by combining the two strategies, we innovatively propose a
framework, named Enhanced Foreground Feature Discrimination Network (EFFD-
Net). Specifically, the main contributions can be summarized as follows: (1) We
introduce the FBSL to better utilize the foreground-background semantics con-
tained in scribble annotations, thereby enhancing foreground discrimination in
the feature space. (2) We propose the FADC mechanism to enhance the network’s
foreground sensitivity and model generalization by using a new foreground aug-
mentation strategy. (3) We design a specialized network architecture optimized
for medical image segmentation with scribble supervision, achieving near fully
supervised performance while lowering annotation costs. Experiments on two
medical datasets demonstrate its state-of-the-art performance.

2 Methodology

This paper proposes a WSMIS framework, which is illustrated in Fig. 2. First,
we formalize the task for clarity in the following description. Specifically, we
define a set consisting of |D| samples as D = {(Xi,yi)}LZ‘l. In this set, each
sample consists of a pair of elements: the input X; € R”'W which represents
a two-dimensional (2D) slice image, and the corresponding annotation ); €

{0, 1}H'W'C+1, which is a manually annotated scribble, covering C' categories of
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Fig. 2. The pipeline of the Enhanced Foreground Feature Discrimination Network
(EFFDNet). Here, "FG" denotes the foreground, and "BG" denotes the background.
The "push" brings tensors closer in feature space, while "pull" distances them. £}9,2
and [,},’2 denote the supervised and unsupervised losses for original and augmented
data, respectively. Lrpsr, is the Foreground-Background Separation Loss.

target objects to be segmented. Notably, the (C' + 1)-th class in the annotation
is specifically used to identify pixel regions that are not annotated.

Basic Framework Our basic framework is inspired by the Mean Teacher [27],
which is originally proposed for consistency regularization in semi-supervised
learning. We reformulated it into a pseudo-label-based model to perform WSMIS.

It involves two networks: the student network Fg;4 and the teacher network
Ficn- During training, the Fgq is guided by scribble annotations ); and pseudo-
labels Y;, which are generated by the Fi, as J; = argmax (Fien(Xi; Oren))-
These pseudo-labels provide additional segmentation supervision to update the
student network’s weights G4 through gradient descent.

The Fien is not updated via gradient descent. Instead, its weights ©;.; are
updated using an Exponential Moving Average (EMA) strategy. This helps stabi-
lize the training process and improve the model’s generalization. At each training
step step, O, is smoothly updated based on @) F = a0 ™! 4+ (1—a)0P.
Among them, « is the EMA decay coefficient that controls the update rate.

In the basic framework, the loss function consists of two items. The first item
is the scribble-supervised loss function £}, which can be expressed as follows:

L =-x7 ZQV ZZ Y Vi k) log (Faa(Xi; Osa) (. k). (1)

i=1 c=1( jk)GQyL

Here, (j, k) represents the pixel index, while £2y, denotes the set of pixels con-
taining scribble annotations. IV represents the sample size. The second item is
the pseudo-label supervised loss, which can be formulated as follows:

N C H W

1 . cls
Lh = C T2 Z 2.2, £(J, k) log (Futa(Xi; Osta) (4, %)) (2)
Foreground-Background Separation Loss To improve the network’s fore-
ground discrimination, we propose an innovative loss, Lrpgr,, as follows.
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First, we extract the feature maps F from a mini-batch of data in the stu-
dent network. These feature maps are obtained from the layer preceding the
segmentation head. Next, we apply a local region aggregation operation to F'

1 L 1 W1
( S , RN )
F{99(r, s) = ﬂz ZF;K e, (3)
K K m=0 n=0

Here, % . % denotes the size of the local regions (i.e., K - K local regions are
divided.), while (r,s) denotes the spatial index of the F;99". Then, based on
foreground-background semantics of the scribble annotations, we assigned corre-

sponding region labels R to each local region of aggregation feature map F;77":

. £ W1 ,(rZtm,s ¥ 4n)
Ri(?”, S) = {; ;ﬁseZmzo Zn:O yz Ic > 0, (4)

Here, the indicator function I (-) selects only the scribbles belonging to the tar-
get {1,...,C} classes, excluding the unannotated (C' + 1)-th class. Inspired by
contrastive losses such as InfoNCE loss [22] and SupConLoss [13], and leverag-
ing the foreground-background semantics, we further design our Lrppsy. The
function aims to bring the foreground regions (R;(r, s) = 1) closer together,
the background regions (R;(r, s) = 0) closer to each other, and simultaneously
separate the foreground from the background, thereby enhancing the spatial
distinction of features between them:

N M., eXP (2(e, 1) 2o, p,0)) /T

H w
>eto ZfK:O u=1 D log

exp <z(evf)’zE:,f,u)>/T+z1;:(in> exp (Z(e, )20 o)) /T

Lrpsr = —
KN RTN - Mg

(5)
Here, we define {z} as the set of feature tensors obtained by applying L2
normalization to the features at each location (r, s) in F997. This step enhances
the training efficiency and stability. Each z ;) serves as an anchor, with M., )
being the number of positive samples and ./\/(e, ) the number of negative samples
for each anchor. The set ZE:’ ) denotes the positive, and z(_e7 ) denotes the nega-
tive samples. The (-) is the similarity measure function, where cosine similarity
is used, and 7 is the temperature coefficient. Positive and negative samples of
the anchor are determined using the region labels R: regions with the same label
as the anchor are positive, and those with a different label are negative.
Finally, during the training, we introduce the Lrppgsy on top of the base net-
work: L1 = LL+ AL} +5Lppsr). Here, A and § are the weighting coefficients.
Foreground Augmentation with Diverse Context Furthermore, we pro-
pose FADC to augment the dataset. For a given randomly selected sample A,
we select a sample X, from the current batch and apply the following process:

CX = X, \ Bbox(X,) UCrop(X,, Bbox(X,)); (6)
Cg’ = Y, \ Bbox(¥,) U Crop(Y,, Bbox(}p)); (7)

o~

¢¥ = ¥, \ Bbox(J,) U Crop(J,, Bbox(J,)). (8)
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Here, the function Bbox(-) locates the foreground region based on the scribble
bounding box (i.e., the minimal bounding box enclosing the scribble annotated
region.), and Crop(-) is responsible for cropping out this region. The operation
\ removes the foreground to retain the background, while U merges the cropped
foreground with the background. After these steps, we obtain samples with fore-
grounds having diverse background contexts, denoted as {CX }, along with the

corresponding scribbles {Cy} and pseudo-labels {Cj} } These processed data are
then used to train the neural network by modifying £} and £}, using {CX } as

input and {Cy }, {Cy} as supervision. This results in the new loss functions
L% and L% for training. Then, the overall loss for learning from the samples
obtained through FADC can be expressed as £*: £2 = £% + AL%. Finally, the
total loss £ of our EFFDNet is as shown below: £ = £! + £2.

3 Experiments and Results

Datasets and Evaluation Metrics We used two publicly available benchmark
datasets: the ACDC [2] and the NCI-ISBI [5]. The ACDC consists of 200 cine-
MRI scans from 100 patients, with three segmentation classes (left ventricle
(LV), right ventricle (RV), and myocardium (Myo)). The NCI-ISBI contains 80
MRI scans with two classes (central gland (CG) and peripheral zone (PZ)).
Details on scribble-based annotations can be found in [19]. Due to the low cross-
slice resolution of these datasets, we used a slice-wise 2D training strategy [29],
resizing each slice to 256 x 256 pixels. In testing, all slices were reassembled
to reconstruct 3D images for evaluation (i.e., the original 3D data is used to
evaluate accuracy.). A five-fold cross-validation approach was applied to assess
segmentation accuracy. The Dice Similarity Coefficient (DSC) (%) was used to
measure the effectiveness of our method.

Implementation Details Our method is implemented using PyTorch and runs
on NVIDIA GeForce RTX 4090 GPU. We employ U-Net [24,19] as the back-
bone, which can be replaced with other advanced models by simply modifying
the networks. To mitigate overfitting, we apply random rotations and flips for
augmentation. Training is conducted using the SGD optimizer with an initial
learning rate of le-2 (adjusted via polynomial scheduling), a momentum of 0.9,
and a weight decay of le-4. The batch size is set to 12, and training runs for up
to 60, 000 iterations to ensure model convergence. « is set to 0.99, K is set to 8,
and A and ¢ are set to 0.6 and 0.3, respectively.

Comparison with Other Methods To validate the effectiveness of our pro-
posed method, we comprehensively compare it with multiple advanced WSL ap-
proaches. These comparative methods were obtained through our own execution.
Quantitative results (mean and standard deviation) on the ACDC and NCI-ISBI
datasets are summarized in Table 1, with the best and second-best results high-
lighted in red and blue, respectively. Our method achieves state-of-the-art DSC
scores across all categories, with statistically significant improvements (* indi-
cates that our method significantly outperforms other WSL methods (p < 0.05)).
Specifically, on the ACDC dataset, it outperforms Scribformer by 0.74%, 1.55%,
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Table 1. Comparison of methods on the ACDC and NCI-ISBI datasets. The reported
indicates that our method significantly outperforms

values represent DSC metric. *

other WSL methods (p < 0.05). RV, Myo, and LV are three classes from the ACDC
dataset, while PZ and CG are two classes from the NCI-ISBI dataset.

ACDC NCLISBI

Type|  Method RV Myo v PZ ca
SCE [I7] [56.44(11.51)%]56.63(3.60)%[69.00(10.12)*[22.03(6.69) |45 33 (4.6 )%
RW [10]  [81.54(4.20)% |71.02(4.08)*|84.75(3.37)% |72.72(5.12) |78.94(3.58)*
USTM [18] [79.27(4.18)* |74.07(3.40)* |76.60(7.85)% |65.57(3.62)*|36.20(9.82)*
S2L [15]  [83.68(2.54)% |81.87(2.83)%|87.44(6.67) |69.79(4.57)*|55.66(4.82)*
wer| MLoss [14] [83.37(2.56)% [82.56(2.55)%|90.68(4.01) |70.87(4.17)*|81.39(1.58)*
EntMin [11] [83.21(3.03)% |80.99(2.82)%|88.73(4.57)% |59.19(4.48)*|42.74(5.45)*
DMPLS [20] [86.22(2.71)% |83.82(2.38)%[91.46(3.27) |69.14(4.18)*|56.43(7.94)*
Scribformer [16]86.24(3.11)  |84.01(2.13)%|91.07(3.63) |69.37(2.49)*|74.20(3.54)*
Ours 86.98(2.55) |85.56(2.59) [92.48(2.43) |72.77(4.18) |86.67(0.62)
FSL| FullSup [24] [89.49(1.90) [89.07(L1.88) [93.95(2.76) |77.23(3.96) |87.90(0.73)

DMPLS

Scribformer Ours

Fig. 3. Comparison visualization on ACDC (first row) and NCI-ISBI (second row).

and 1.41% in the RV, Myo, and LV categories, respectively. The advantage is
more pronounced on the NCI-ISBI dataset, with improvements of 3.40% and
12.47% in the PZ and CG categories, respectively. Notably, our method, de-
spite relying on weak scribble annotations, achieves performance comparable to
fully supervised methods (FullSup), demonstrating its ability to reduce annota-
tion costs while maintaining high segmentation accuracy. Fig. 3 show that our
method better captures anatomical structures in foreground regions. Specifically,
the first row exhibits reduced inter-class misclassification for RV (orange), Myo
(green), and LV (yellow), along with finer boundary adherence. Meanwhile, the
second row demonstrates more complete segmentation and more precise delin-
eation for PZ (orange) and CG (green). And the results also show that our
method mitigates background over-segmentation. The above analyses confirm
our model’s superior ability to enhance foreground discrimination, thereby im-
proving segmentation accuracy metrics and morphological accuracy.

Ablation Study Table 2 shows the results of ablation study, demonstrating
that both proposed strategies significantly enhance performance. On the ACDC,
our Lrpsy, improves DSC by 2.77%, 4.44%, and 4.46% for RV, Myo, and LV,
respectively. On the NCI-ISBI, the gains are even higher, reaching 6.48% and
19.98% for PZ and CG. The FADC also contributes notable improvements of
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Table 2. The ablation experiments conducted on Lrpsr and FADC

ACDC NCI-ISBI
Method RV Myo v PZ CCG
Baseline [83.13(3.92)[30.16(2.37)[87.71(4.39)[65.91(9.17)[65.92(15.11)

w/. Lppsi|85.90(2.84)[84.60(1.61)[92.17(3.40)|72.30(4.24)|85.90(0.28)

w/. FADC |85.88(3.12)|82.55(2.97)|89.49(3.48)| 71.15(7.28)|82.18(1.66)

Ours  86.54(2.47)|85.67(2.71)|92.15(2.70)|73.00(3.95) |86.37(0.62)

Baseline

Fig. 4. Ablation visualization on ACDC (first row) and NCI-ISBI (second row).

2.75%, 2.39%, 1.78%, 5.24%, and 16.26% across these categories. Combining
both strategies achieves the best overall performance, with average improvements
of 4.45% and 13.77%. These results highlight the contributions of our method,
and Fig. 4 qualitatively illustrates the visualization improvements. First, the
Lrpsr loss enhances foreground-background separation, reducing background
over-segmentation (e.g., incorrect extra segmentations of Myo and LV) and im-
proving the accuracy of segmentation morphology. Then, the FADC further
strengthens foreground discrimination and generalization by introducing images
of diverse augmented foreground, reducing inter-class confusion. For example,
in the first row, FADC improves the morphological accuracy of RV, Myo, and
LV, while in the second row, it reduces misclassification between PZ and CG.
Together, these strategies collectively prevent background over-segmentation,
reduce inter-class confusion, and maintain morphological accuracy.

In addition, we analyzed the sensitivity of the hyperparameters § and K in
the Lrppsr, as shown in Fig. 5. Experimental results indicate that the model’s
performance is relatively insensitive to variations in § and K. Consequently, we
select 6 = 0.3 and K = 8 as the optimal value for the best average accuracy.

4 Conclusion

In this paper, we propose EFFDNet, which enhances foreground discrimination
ability. By analyzing the foreground-background semantics in scribbles, we intro-
duce a novel loss function, FBSL, to improve the network’s ability to distinguish
between foreground and background regions in feature space, addressing misseg-
mentation while preserving morphology accuracy of segmentations. Additionally,
we design a new mechanism, FADC, which enhances the network’s sensitivity of
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Fig. 5. Sensitivity analysis of hyperparameters § and K.

foreground regions and mitigates overfitting. Experiments on two medical image
datasets demonstrate the effectiveness of our EFFDNet and proposed strategies,
resulting in notable improvements.

Although our network reduces misclassification across categories by enhanc-
ing foreground discrimination, it does not explicitly impose constraints on mis-
classification within the foreground region. In future work, we will focus on
improving the network’s ability to address this issue by designing more specific
loss functions or adopting pseudo-label correction strategies.
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