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Abstract. In medical image analysis, significant challenges arise from
domain shifts. Models trained on one dataset often struggle to general-
ize to unseen domains, limiting their clinical utility. To overcome this
challenge, recent advancements have tried to increase the diversity of
training data with data augmentation, in which the augmentation rules
are pre-set before training commences and remain unchanged throughout
the training process. Previous methods do not augment according to the
unique characteristics of individual samples. As a result, they fail to cover
the full diversity of unseen domains. To tackle this problem, we propose
a learnable framework, the Adaptive Augmentation Framework (ADA),
which can adaptively augment data catering to each individual sam-
ple. It has three operators for different purposes: 1) the Learnable Bezier
Remap operator dynamically adjusts parameters to do the augmentation
according to its content features. 2) the Channel Shift Control operator
dynamically tunes shift and scale parameters for each color channel. By
capturing fine-grained variations and improving spectral detail represen-
tation. 3) The Gradient-guided Feature Weaken operator dynamically
reduces the influence of high-impact features to improve the model’s
ability to generalize. Extensive experiments conducted on seven medical
segmentation datasets demonstrate that adaptive augmentation is more
likely to cover large diversity in the unseen domain.
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1 Introduction

Despite the excellent performance of deep-learning models in medical image anal-
ysis, a pivotal challenge remains the domain shift phenomenon, where models
⋆ Co-corresponding author: wfsu@uic.edu.cn
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Static Image Augmentation Dynamic Image Augmentation
Fixed rules, predefined before training Adaptive rules, adjusted based on sample

characteristics
Uniform transformations applied to all

samples
Personalized transformations based on

individual sample
Limit to cover the full distribution of

unseen domains
Integrating diverse inputs into a

consistent feature space
Table 1. Comparison of Static and Dynamic Image Augmentation. Previous methods
like CISDG, SLAUG, and CCSDG use static augmentation techniques that lack the
flexibility to dynamically adapt to the specific characteristics of individual samples. Our
method (ADA) combines both static and dynamic augmentation methods, enhancing
the model’s generalization capability.

Fig. 1. Comparative analysis of ADA versus previous domain generalization methods.
(a) Previous domain generalization methods enhance diversity by static augmentations
to improve model generalization. (b) ADA employs a novel approach by integrating
static and dynamic augmentations. It adapts to diverse input through learnable Bezier
curve remapping and controlled distribution shifts, enabling personalized transforma-
tions based on individual samples, thus enhancing generalization. (c) ADA outperforms
state-of-the-art methods on seven medical image segmentation datasets.

trained on data from one domain struggle to generalize effectively to unseen do-
mains. The domain shift poses a substantial challenge in clinical practice, given
the broad variability in medical images. This variability stems from differences
in imaging equipment, protocols, and patient demographics. Consequently, the
model’s inability to generalize can severely limit its clinical utility, as its per-
formance may degrade when applied to images from new centers or devices not
represented in the training data.

To alleviate this problem, such methods using ensemble learning [8] for brain
MRI lesion segmentation or utilizing meta-learning[4] for swift adaptation in
brain MRI tasks, have made strides in refining learning strategies and architec-
tures. Nonetheless, these approaches often require extensive computational re-
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sources and retraining efforts, which are impractical for real-world applications
with limited computational capabilities and diverse medical imaging datasets.

Different from previous methods, existing works propose increasing the diver-
sity of input and utilizing consistency strategies to extract domain-invariant fea-
tures [16, 15, 10]. For instance, SLAUG [13] introduces a saliency-balanced fusion
approach that integrates both global and local image augmentation. C2SDG[5]
enhances image diversity using the StyleAug method and uses contrastive feature
disentanglement to constrain model consistency. These methods have primar-
ily focused on enhancing the diversity of training images to combat this issue.
However, these methods are inadequate to cover the full diversity of unknown
domain distributions. These approaches only explore static image augmentation
and consistency strategies in domain generalization (Figure 1a), while dynamic
adaptation remains an ignored topic in the literature.

Existing methods primarily delve into static image augmentation for domain
generalization (Table 1), in which the augmentation rules are set before training
commences and remain immutable throughout the training process. Moreover,
a uniform set of transformations is applied to all samples, without taking into
account the distinct characteristics or variations of each individual sample. In
contrast, our work introduces dynamic adaptation methods through the Adap-
tive Augmentation framework (ADA), which dynamically adapts transformation
parameters based on each sample’s unique characteristics (Figure 1b), thereby
enhancing generalization across diverse and unseen domains. This is achieved
through a dual-module framework: the Learnable Bezier Remap operator and
the Channel Shift Control operator.

The Learnable Bezier Remap operator is designed to minimize domain dis-
parity by dynamically adjusting parameters for each sample, thereby mapping
it into a unified feature space. Concurrently, the Channel Shift Control oper-
ator refines the process by adjusting shift and scale parameters for each RGB
channel individually, thereby capturing both global channel characteristics and
local details within the images. Moreover, to enhance the model’s generalization
capability across varied domains, we have integrated a Gradient-guided Feature
Weaken operator. This module weakens the influence of high-impact features, en-
hancing the model’s ability to generalize by simulating diverse domain samples.
This strategy helps in reducing overfitting to domain-specific features.

Our comprehensive experiments, conducted on seven distinct medical seg-
mentation datasets from different domains, have demonstrated the effectiveness
of ADA (Figure 1c). The empirical evidence clearly shows that our method
not only surpasses previous methods in terms of performance but also signifi-
cantly contributes to the advancement of single-source domain generalization in
medical image segmentation.

In summary, this paper makes the following key contributions to the field
of medical image segmentation:(1) We propose ADA, a novel adaptive augmen-
tation framework that improves generalization in medical image segmentation
by dynamically adapting augmentations to each sample’s unique characteris-
tics. Through adaptive feature adjustments, ADA effectively enhances robustness
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against unseen domain variations. (2) We introduce three novel operators: the
Learnable Bezier Remap operator for dynamic sample remapping, the Chan-
nel Shift Control operator for fine-tuning RGB channel parameters, and the
Gradient-guided Feature Weaken operator for reducing high-impact features.
Together, these operators enhance generalization, robustness, and adaptability
in medical image segmentation across diverse domains. (3) Extensive experi-
ments conducted on seven distinct medical segmentation datasets from differ-
ent domains demonstrate the superiority of our ADA framework over existing
methods, demonstrating its effectiveness in improving model generalization and
addressing domain shift challenges in medical image segmentation.

2 Method

Fig. 2. Overview of our Adaptive Augmentation Framework (ADA) Structure. The
framework consists of three core modules: (1) The Learnable Bezier Remap operator,
which maps samples from different domains into a unified feature space by dynamically
adjusting transformation parameters. (2) The Channel Shift Control operator, which
refines spectral detail representation by tuning shift and scale parameters for each
color channel. (3) The Gradient-guided Feature Weaken operator, which reduces the
influence of domain-specific features, further improving the model’s adaptability and
robustness across unseen domains.

2.1 Learnable Bezier Remap operator

We introduce the Learnable Bezier Remap operator, which leverages the prin-
ciples of Bezier curves to perform image enhancement. Given a batch of images
X ∈ RN×3×512×512, where N is the batch size, the module adaptively computes
Bezier control points based on the image content and applies the transformation
to enhance image contrast and sharpness.

The module first employs an adaptive average pooling layer, compressing
each image in the batch to its average color intensities, yielding A ∈ RN×3.
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Subsequently, a linear transformation, defined by the weight matrix W ∈ R3×4

and bias b ∈ R4, maps A to a set of control points for the Bezier curves:[
P1b

P2b

]
= tanh(W (Ab,c) + b) (1)

for b = 1, . . . , B and c = 1, . . . , C. P1b,P2b represents the intermediate control
points, which define the dynamic control points of the Bezier curve for each
image.

Ab,c =
1

H ×W

H∑
i=1

W∑
j=1

Xb,c,i,j (2)

for i = 1, . . . , 512 and j = 1, . . . , 512. Here, P ∈ RB×C is the result of applying
adaptive average pooling, reducing each spatial dimension of the image to a
single scalar per channel.

The Bezier curve for each image and channel is computed using the fixed
points P0 = (0, 0) and P3 = (1, 1), and the dynamically estimated P1 and P2.
For a parameter t ∈ [0, 1], the Bezier curve is defined as:

Bezier(t) = (1− t)3P0 + 3(1− t)2tP1 + 3(1− t)t2P2 + t3P3 (3)

z:
Xenhanced

(i,c) = Bezier(Xnorm
(i,c) ) (4)

where i and c index into the batch and color channels, respectively.

2.2 Channel Shift Control operator

After the raw image, X is processed by the Learnable Bezier Remap operator,
given an enhanced image E ∈ RN×C×H×W , where N denotes the batch size, C
is the number of channels (3 for RGB images), and H,W represent the height
and width of the image, respectively.

The module first employs an adaptive average pooling layer, compressing
each image in the batch to its average color intensities, yielding A ∈ RN×3.
Function F is represented by a fully connected layer, which maps the pooled
features to scale and shift parameters. For the input A, we obtain scale (S) and
shift (T ) parameters as follows:[

Sb,c

Tb,c

]
= tanh(F (Ab,c) + b) (5)

for b = 1, . . . , B and c = 1, . . . , C. S, T ∈ RB×C are the scale and shift parameters
for each channel, respectively.

The adjusted image Ê is then computed by applying the scale and shift
parameters to each pixel of the original image:

Êb,c,i,j = Eb,c,i,j · (1 + Sb,c) + Tb,c (6)
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for all b = 1, . . . , B, c = 1, . . . , C, i = 1, . . . ,H, and j = 1, . . . ,W .
Each channel of the image is independently adjusted with its own scale and

shift parameters, which are derived from the global characteristics of the channel
captured by the adaptive average pooling.

2.3 Gradient-guided Feature Weaken operator

Let xs ∈ RC′×H′×W ′
denote the input tensor to the last convolutional layer,

where C ′ represents the number of channels and H ′,W ′ are the spatial dimen-
sions of the height and width, respectively. Given a binary cross-entropy loss
function , the loss L with respect to the ground truth gt is:

L = −
∑

(gt · log(y) + (1− gt) · log(1− y)) (7)

The gradient of L with respect to xs, denoted as ∇L, is computed using
backpropagation. Define g ∈ RH′×W ′×C′

as the gradient tensor ∇L. The thresh-
old θ for mask generation is set based on the specified percentile of the gradient
magnitudes. The weaken tensor xw is defined as:

xw =

{
xs ⊙ α, if |∇Lh,w,c| ≥ θ

xs, otherwise
(8)

xw represents the features processed by the Gradient-guided Feature Weaken
operator, which reduces the impact of high-gradient features. It improves the
model’s ability to generalize by focusing on less dominant, more robust features,
making the model more adaptable to new, unseen data.

Metric REFUGECUP REFUGEDISC REFUGEMEAN Drishti-GSCUP Drishti-GSDISC Drishti-GSMEAN

ERM 70.67% 92.88% 81.77% 83.18% 96.49% 89.83%
RSC[6] 75.81% 90.82% 83.31% 84.16% 95.87% 90.01%

CISDG[10] 67.45% 86.83% 77.14% 77.00% 88.23% 82.61%
SLAUG[13] 77.98% 93.17% 85.58% 72.32% 96.34% 84.33%
CCSDG[5] 83.60% 94.98% 89.29% 84.34% 96.55% 90.45%

ADA 85.80% 95.71% 90.76% 86.74% 94.59% 90.67%

CVC-ColonDB ETIS-LaribPolypDB Kvasir-SEG ISBI_1.5 I2CVB

Metric Dice (%) IoU (%) Dice (%) IoU (%) Dice (%) IoU (%) Dice (%) IoU (%) Dice (%) IoU (%)

ERM 65.11 48.81 65.02 51.82 82.87 71.61 82.95 71.18 64.46 48.07
RSC[6] 68.72 54.04 45.34 29.63 79.59 67.74 83.47 71.85 73.86 58.87

CISDG[10] 55.10 38.91 43.71 30.28 80.97 68.77 82.70 70.73 77.16 63.10
SLAUG[13] 71.46 55.75 51.22 38.43 79.88 67.52 82.80 70.85 66.44 50.49
CCSDG[5] 70.51 55.65 75.42 61.97 84.61 74.15 82.81 71.02 71.03 55.76

ADA 72.51 57.22 76.08 63.43 84.73 74.93 85.37 74.67 78.77 65.26

Table 2. Dice and IoU results for different datasets and models (in percentages)
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3 Experiments and results

3.1 Experimental setup

Single-Source Domain Generalization for segmentation: The segmenta-
tion model is trained on a single source domain and directly evaluated on other
target (unseen) domains. Performance is measured using Dice and IoU metrics.

Dataset Our study uses three medical datasets: Polyp, Fundus, and Prostate.
The source domains include 488 colonoscopy images from CVC-ClinicDB[1] for
polyp segmentation, 400 fundus images from REFUGE[9] for optic disc and cup
segmentation, and 162 MRI images from UCL for prostate segmentation. The
target domains for Polyp are CVC-ColonDB[14], ETIS[2], and Kvasir-SEG[7].
For Fundus, the targets are Drishti-GS[12] and REFUGE. For Prostate, the
targets are I2CVB and ISBI_1.5.

Fig. 3. Comparison of masks predicted by ADA and previous competing methods.

Experimental Settings Our segmentation network leverages an architec-
ture based on CNN structure[11] and DeepLabv3+[3], specifically adapted for
segmentation. mage augmentations employed, following the settings in [5], in-
clude Gaussian noise, contrast adjustment, etc. The model implementation was
carried out using PyTorch on a single NVIDIA GeForce RTX 4090 GPU.

3.2 Comparison with SOTA Methods

The quantitative evaluation in Table 2 highlights the superiority of our pro-
posed method, ADA, over existing techniques across various medical image seg-
mentation tasks, showcasing its enhanced generalization ability. These results
clearly indicate that ADA’s dynamic adaptation approach is more effective than
static image augmentation strategies employed by previous methods. The visu-
alization of different methods is presented in Fig. 3, where ADA demonstrates
fewer misclassified predictions in the unseen target domain, further illustrating
its superior domain generalization capability.
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Bezier ConShift Weaken Avg Dice

ERM - - - 82.95
Variant 1 ✓ 83.88
Variant 2 ✓ 83.61
Variant 3 ✓ 81.90
Variant 4 ✓ ✓ 83.68
Variant 5 ✓ ✓ 84.69
Variant 6 ✓ ✓ 83.89
Variant 7 ✓ ✓ ✓ 85.37
Table 3. Ablation study on the effect of
Bezier, ConShift, and Weaken.

Cup Disc Avg

Negative Grad 83.41 96.45 89.93
Positive Grad 86.74 94.59 90.67

Abs Grad 86.14 95.65 90.90
Cup Disc Avg

Quartic 83.64 93.78 88.38
Cubic 85.80 95.71 90.76

Quadratic 83.87 93.71 88.82
Table 4. Impact of Component
Strategies on Performance Metrics.

Fig. 4. t-SNE Visualization of Target Pixel Features. The plots show feature
distributions, with purple for the background, cyan for the optic disc, and yellow for
the optic cup. In SLAUG, the red arrow highlights regions of poor class distinction. In
CCSDG, the red circle indicates confusion between cup and background features. In
contrast, ADA clearly separates disc and cup features from the background, demon-
strating superior segmentation performance.

3.3 Analytical Experiments

Ablation Study. We conduct ablation studies on the three main ADA compo-
nents: Learnable Bezier Remap (Bezier), Channel Shift Control (ConShift), and
Gradient-guided Feature Weaken (Weaken). Table 3 shows that each component
is crucial for enhancing model performance, with their combined use leading
to superior generalization. Gradient-Guided Strategy. In Table 4 Upper, we
evaluate the impact of different gradient manipulation strategies on segmentation
performance. The Negative Grad strategy, which weakens negative gradients, un-
derperforms, highlighting the importance of these gradients. In contrast, both
the Positive Grad and Abs Grad strategies improve performance by reducing
overfitting and promoting better generalization. Bezier Curve Complexity.
In Table 4 Lower, we evaluate Bezier curve complexity in the Global Bezier
Remap Module. Testing quadratic, cubic, and quartic curves shows that a single
control point lacks flexibility, while three lead to overfitting. The cubic Bezier
curve strikes the best balance, offering improved generalization by avoiding both
underfitting and overfitting.
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4 Conclusion

We introduce the Adaptive Augmentation Framework (ADA), which adapts
augmentations to individual samples, improving generalization across unseen
domains. Experiments on seven medical segmentation datasets show ADA out-
performs existing methods, enhancing robustness and clinical relevance.
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