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Abstract. Chest X-ray (CXR) image examination is a primary tool for
assessing thoracic abnormalities. It is widely utilized for initial diagnosis
and screening of diseases due to its cost-effectiveness and low radiation
dose. Segmentation of ribs in CXR images (CXR rib segmentation) facil-
itates rapid determination of lesion types and locations, thereby alleviat-
ing the workload of medical professionals. Deep learning-based methods
have achieved significant progress but still face some challenges in CXR
rib segmentation, such as the occlusion challenge caused by artifacts and
the interlace challenge caused by the spatial overlap of ribs. Therefore,
it can be observed that the topological knowledge of ribs is crucial for
CXR rib segmentation but neglected in existing methods, including the
connectivity and interactivity of ribs. To address these challenges, we
propose a novel learning framework that integrates explicit topological
priors into segmentation networks for precise CXR rib segmentation. In
particular, we introduce two modules including the connectivity prior
embedding module and the interactivity prior embedding module. These
modules are designed to explicitly encode the continuity and interactiv-
ity of ribs into deep learning models for end-to-end training. Both mod-
ules are plug-and-play and can be integrated into various networks. We
conduct extensive experiments on VinDr-RibCXR and CXRS datasets
to evaluate the segmentation accuracy of each rib using multiple met-
rics. Evaluation and visual results show that our method exhibits strong
adaptability, seamlessly integrating with diverse architectures and en-
hancing performance across various networks. Our code is publicly avail-
able at https://github.com/XWei98/LTSeg.
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1 Introduction

Chest X-ray (CXR) imaging, with its advantages of simplicity, fast imaging, low
cost, and low radiation exposure [9], remains a primary modality for screen-
ing and diagnosing lung diseases such as COVID-19 [7]. Segmentation of ribs
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Fig. 1: Left: Incorrect segmentation results for different ribs. Right: Schematic
representation of topological priors: connectivity and interactivity. Connectivity:
α, β, γ, should all be complete individuals. Interactivity: α is above β and
partially overlaps, γ is below β and partially overlaps.

is also essential in medical image analysis, which helps to improve lesion de-
tection and disease diagnosis by quantitatively analyzing accurate segmentation
results accuracy [4], personalized patient care [17]. Moreover, the stable struc-
ture and morphology of ribs serve as reliable references for various analytical and
quantification tasks, including estimating lung volume [20,2], quantifying bone
abnormalities, and assessing pediatric spinal deformities. However, as shown in
Fig.1-left, CXR rib segmentation is a challenging task. (1) Due to the complex
interleaving of the 24 ribs in the CXR image, artefacts can also arise from the
contact of different structures with the surrounding tissue [8,13]. This may mis-
lead the network into the surrounding ribs area, as shown in (b), (e), and (f). (2)
Due to lesions in the lungs or other conditions causing abnormal local grayscale
values in CXR image, the segmentation results of ribs may appear disjointed, as
shown in (c), and (d). These challenges can adversely affect the accuracy of rib
segmentation.

To solve these problems, inspired by previous research [3] we propose a new
method to learn topological prior knowledge of interactions and connectivity,
as shown in Fig.1-right. It can also be encoded into the training process of
deep neural networks to help them learn autonomously. Specifically, we propose
two topological constraint modules: the Connectivity prior Embedding Module
(CEM) and the Interactivity prior Embedding Module (IEM). We use these
two modules to encode the topological prior knowledge of partial overlap and
connectivity present in the rib structure into a deep neural network, identify the
pixel points that violate the topological prior knowledge, and apply violation
penalties to these pixel points to make the network pay more attention to these
locations.

Our main contributions are summarized as follows: 1)We propose an interac-
tivity prior embedding module to constrain the interactive overlap between ribs
and a connectivity prior embedding module to constrain the internal connectiv-
ity of ribs. 2)Both modules can be plug-and-played into any deep neural network
to encode conforming topological prior knowledge into deep neural networks for
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Fig. 2: The overall structure of our proposed framework. K represents the number
of anatomical structures.

end-to-end training. 3)We conduct extensive experiments on multiple CXR rib
segmentation datasets, CXRS and VinDr-RibCXR datasets. Both the evaluation
and visualization results demonstrate the effectiveness of our method.

2 Methodology

From a morphological perspective, ribs in CXR image have two fixed topological
priors: connectivity and interactivity. In Fig. 1-right, we use three rib labels α,
β, and γ as specific examples to illustrate these topological priors. Connectivity
implies that the ribs α, β, and γ should be complete entities. Interactivity refers
to the crossing and partial overlap of α, β, and γ in the imaging of CXR image.
Due to occlusion and overlap between different structures and large shadow re-
gions, issues like missegmentation and incomplete segmentation arise during the
segmentation process of individual ribs. For other ribs, we consider the current
rib structure as β, the structure above it with interaction as α, and the structure
below it with interaction as γ, and we observe that their topological relationships
in the same way. Therefore, encoding topological priors such as connectivity and
interactivity priors into deep neural networks for constraint is necessary.

2.1 Overview

The CXR image is input into a deep neural network to predict each of the 24 ribs
individually. Next, each rib prediction and its ground-truth are processed by the
Connectivity prior Embedding Module to identify violations of the continuity
prior. Simultaneously, each rib, its upper and lower neighbors, and their respec-
tive ground-truths are input into the Interactivity Prior Embedding Module to
detect violations of the interactivity prior. Regions with topological inconsisten-
cies are penalized to enhance feature learning, as shown in Fig. 2. The proposed
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Fig. 3: The detail of our Connectivity prior Embedding Module (left) and Inter-
active prior Embedding Module (right).

modules are integrated into an end-to-end training framework. The network
jointly optimizes the segmentation loss LSeg and topological penalty LCoIn, en-
suring adherence to intrinsic topological priors while improving segmentation
accuracy.

2.2 Connectivity Prior Embedding Module

The Connectivity prior Embedding Module (CEM) encodes the topological prior
knowledge of the connectivity inside each rib in the CXR image into a deep neural
network. Specifically, we first obtain binary masks for these predicted images
separately and input the binary masks of each rib, denoted as the Key Rib Pred
(KRp), into the CEM. After that, we employ a manually designed K ×K full
connectivity convolutional kernel to fill the mask, thus filling the gaps in KRp,
resulting in the filled Dilation Pred (Dp). Fully connected convolution refers
to setting all pixels within the current convolution kernel to foreground pixels
as long as a foreground pixel appears. However, this convolution operation will
cause unnecessary filling pixels to appear on the outside. In order to avoid the
extra pixel filling, we first invert the foreground pixels and background pixels
(denoted as ↕) in the original Key Rib Pred to get the Reversal Pred (Rp).
Subsequently, we multiply Dp with Rp to obtain the intersection region, denoted
as D.Rp. Finally, we perform pixel-wise multiplication between D.Rp and the
binary ground-truth (GT ) images, effectively excluding the genuine areas that
do not violate the connectivity prior, yielding the final essential connectivity
penalty map (CPm). We can quantize the above steps as Equation 1:

Dp = KRp ⊛K, RP = KRp ↕,
D.Rp = Dp ⊙Rp, CPM = D.Rp ⊙GT,

(1)

the symbol ⊛ denotes the standard convolution operation, and K represents the
convolution kernel of our fully connected kernel. ⊙ denotes the Hadamard prod-
uct, and ↕ denotes the reversal of front and background pixels. The detailed
process is visualized in Fig. 3-left. It condenses the computed connectivity con-
straint maps for each target into binary masks. This enables us to integrate topo-
logical connectivity prior knowledge into any deep neural network, constraining
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the existing feature information with the Connectivity prior Embedding Module.
Enabling the model to overcome the problem of incomplete segmentation of ribs
due to occlusion and shaped shadows, which in turn improves the accuracy of
rib segmentation.

2.3 Interactivity Prior Embedding Module

The Interactivity prior Embedding Module (IEM) encodes topological prior
knowledge of interactivity between ribs in CXR image into a deep neural net-
work. Specifically, we first obtain binary masks for these predicted images. Then,
we simultaneously input the binary mask of each rib, denoted as Key Rib Pred
(KRp), and the ground-truth of the ribs above and below it, denoted as Upper
Rib Ground-truth (URG) and Lower Rib GT (LRG) into the Interactive Con-
straint Module. We perform pixel-wise multiplication between KRP and URG to
obtain their intersection, denoted as K.Up. Similarly, pixel-wise multiplication
between KRP and LRG results in their intersection, denoted as K.Lp. Then,
we add these two binary masks K.UP and K.Lp to obtain the Inter Pred (Ip).
Ip represents the interference from surrounding ribs, mistakenly segmented as
the pixel region of the current rib in the prediction of a single rib. However, due
to the 2D projection of different ribs in the imaging process of the CXR image,
there are naturally overlapping parts of the ribs in the CXR image. Therefore, to
avoid imposing penalties on these naturally existing overlapping regions, we op-
erate on the ground-truth of the key rib and its upper and lower ribs in the same
way as before, obtaining Inter GT (IG). IG represents the naturally occurring
overlap regions of the current rib with the surrounding ribs in the CXR image.
We eliminate the naturally overlapping regions in Inter to obtain the Interac-
tive Penalty Map (IPm), which represents the violation of the topological prior
knowledge of interactivity between ribs in the predicted results of the current
rib. We can quantize the above steps as Equation 2:

K.Up = KRp ⊙ URG, K.LP = KRp ⊙ LRG,

Ip = K.Up ⊕K.Lp, IPm = Ip ⊖ IG,
(2)

where ⊕ denotes the union operation and ⊙ denotes the Hadamard product. ⊖
indicates exclusion. The detailed process is visualized in Fig. 3-right. This en-
ables us to integrate topological prior knowledge into any deep neural network,
constraining the existing feature information with the Interactivity prior Em-
bedding Module. Enabling the model to distinguish adjacent ribs improves the
accuracy of rib segmentation.

2.4 Incorporating into End-to-End Training

To integrate our modules into an end-to-end training framework, we propose a
topological prior knowledge constraint loss. Penalties are applied to the pixels
identified by IEM and CEM that violate topological prior constraints, thereby
correcting these inconsistencies. Specifically, let F ∈ RB×C×H×W represent the
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multi-likelihood map predicted by the network, where B is the batch size, C is
the number of segmentation categories, and H, W denote the height and width of
the map. Similarly, G ∈ {0, 1}B×C×H×W is the ground-truth segmentation map.
The original segmentation loss, LSeg, employs Dice loss, a widely used metric
in segmentation tasks. Additionally, LCoIn represents the topological prior loss,
imposing penalties on regions identified by CPm and IPm that violate prior
constraints, as shown in Equation 3:

LCoIn = Ltpc(F ⊙ (CPm + IPm), G⊙ (CPm + IPm)),

LAll = LSeg + λLCoIn.
(3)

Our topological priori constraint loss LCoIn is controlled by the weights λ and
summed with LSeg to get the overall loss LAll.

3 Experiment and Results

3.1 Datasets and Evaluation Metrics

To validate the effectiveness of our approach, we perform training and evaluation
on the VinDr-RibCXR [10] and CXRS [5] rib segmentation datasets.
CXRS Dataset [5] consists of 1,242 CXR images, which we split into training,
validation, and testsets (lesion images). Each image is annotated with pixel-level
labels for 24 ribs, including the left side (L1–L12) and the right side (R1–R12).
We redivided the dataset to ensure that the test set included pathological condi-
tions of different degrees, providing a more challenging scenario for anatomical
segmentation.
VinDr-RibCXR Dataset [10] contains 245 CXR images, with 196 allocated
for training and the remaining 49 for testing. Each image includes segmentation
annotations for 20 ribs, covering L1–L10 on the left and R1–R10 on the right.
Evaluation Metrics We employ standard evaluation metrics, including positive
measures (IoU, DSC, Specificity, and Sensitivity) as well as negative measures:
Average Symmetric Surface Distance (ASSD) and Hausdorff Distance (HD).
Experiment Settings All models were implemented on a GeForce RTX 4090
with an AMD EPYC 7542 32-Core Processor @ 3.164 GHz and 251 GB mem-
ory. We set the image input size to 448×448 and trained the network using the
widely-used Adam optimizer [6]. We trained all the networks for 300 epochs.
And we chose Dice loss as our primary loss function.

3.2 Experiment Results

We assess our method on three publicly available medical image segmentation
datasets, benchmarking it against approaches built on different architectures, in-
cluding CNN-based methods [11,19,15], Transformer-based models [1,16], Mamba-
based frameworks [12], and SAM-based method [18].

We uniformly apply our Connectivity prior Embedding Module (CEM) and
Interactivity prior Embedding Module (IEM) to the aforementioned methods,



Learning with Explicit Topological Priors for Chest X-ray Rib Segmentation 7

Table 1: Quantitative comparison on the VinDr-RibCXR and CXRS. † denotes
the method after loading the pre-trained model.

Methods
VinDr-RibCXR [10] CXRS [5]

mIOU↑ mDSC↑ mSen↑ mSpec↑ mHD↓ mASSD↓ mIOU↑ mDSC↑ mSen↑ mSpec↑ mHD↓ mASSD↓
UNEXT [14] 42.75 57.90 56.39 99.42 46.06 5.447 44.76 59.01 59.67 99.35 41.71 5.571
UNEXTours 43.95 59.30 53.83 99.52 38.09 4.481 45.77 60.08 56.76 99.44 37.75 5.250

Unet++ [19] 59.25 72.49 73.85 99.58 27.67 2.792 58.02 70.51 70.55 99.54 30.70 4.177
Unet++ours 60.38 73.39 72.96 99.62 27.42 2.712 58.23 70.76 73.09 99.51 30.09 4.168

Unet [11] 59.82 73.14 74.24 99.59 29.29 2.650 58.68 71.11 73.42 99.52 30.18 4.038
Unetours 60.80 73.93 72.39 99.65 28.25 2.564 58.92 71.34 71.01 99.56 30.41 4.004

UCtransUnet [16] 59.68 72.88 72.83 99.61 28.60 2.747 62.58 74.48 75.41 99.60 27.9 3.313
UCtransUnetours 60.43 73.61 71.87 99.65 28.41 2.629 62.73 74.61 73.29 99.64 28.18 3.306

AttenUnet [15] 63.47 75.97 76.32 99.65 26.28 2.275 63.21 74.75 76.42 99.58 26.13 3.472
AttenUnetours 63.92 76.32 74.73 99.68 26.36 2.286 63.62 75.06 74.88 99.62 26.16 3.443

VM-Unet† [12] 63.75 76.70 78.1 99.65 21.45 1.373 66.67 78.30 79.28 99.64 23.30 2.238
VM-Unet†ours 65.16 77.96 76.52 99.71 22.00 1.231 67.68 79.07 77.32 99.70 22.72 2.149

TransUnet [1] 63.77 76.36 76.78 99.66 25.14 1.898 65.83 77.26 78.20 99.64 23.40 2.635
TransUnetours 65.86 77.99 76.60 99.71 23.33 1.790 66.36 77.51 75.97 99.68 22.89 2.644

MedSAM† [18] 65.48 78.65 78.23 99.76 19.74 1.188 67.65 79.45 78.59 99.71 15.57 1.642
MedSAM†

ours 66.28 79.23 78.66 99.76 18.67 1.083 68.40 79.91 78.57 99.73 15.32 1.623

TransUnet† [1] 70.38 81.37 81.76 99.73 19.70 1.334 69.83 80.23 81.04 99.69 21.07 2.286
TransUnet†ours 71.09 82.07 80.65 99.77 19.33 1.221 70.66 81.01 80.47 99.72 19.18 2.137

Table 2: The Left: Ablation studies of the CEM and IEM on the CXRS dataset.
The Right: Ablation Study for convolutional kernels of CEM on the CXRS
dataset.

CEM IEM mIOU mDSC mSen mSpec mHD mASSD

- - 69.83 80.23 81.04 99.69 21.07 2.286
✓ - 70.06 80.48 81.20 99.69 20.12 2.243
- ✓ 70.49 80.91 80.07 99.72 19.42 2.148
✓ ✓ 70.66 81.01 80.47 99.72 19.18 2.137

Conv kernels mIOU mDSC mSen mSpec mHD mASSD

3×3 70.40 80.80 79.30 99.74 21.60 2.207
5×5 70.66 81.01 80.47 99.72 19.18 2.137
7×7 70.44 80.80 79.46 99.73 19.73 2.201
1×5 70.27 80.63 80.00 99.72 20.07 2.233
5×1 70.58 80.92 80.43 99.72 19.32 2.111

incorporate the topological prior constraints for training, namely UnetOurs,
Unet++Ours, AttUnetOurs, UCTransUnetOurs, , TransUnet†Ours, VMUNet†Ours

and MedSAM†
Ours. For the experiments based on SAM, we all adopt the prompt-

free strategy to avoid relying on expert prompts. Experiments on the VinDr-
RibCXR and CXRS datasets demonstrate that our method outperforms ex-
isting approaches across multiple metrics, as shown in Table 1, particularly in
mIOU and mDSC. For instance, compared to TransUnet, our approach achieves a
1.12% improvement in mIOU and a 1.43% improvement in mDSC on the VinDr-
RibCXR dataset, while also achieving state-of-the-art performance on the CXRS
dataset. Furthermore, our method exhibits superior robustness in terms of mHD
and mASSD. These results demonstrate that our method effectively embeds in-
teraction and connectivity priors specific to ribs into the different architectures.
The visualization results are shown in Fig. 4.

3.3 Ablation Study

To substantiate the efficacy of our proposed method, we conduct comprehensive
ablation studies on the CXRS dataset based on TransUnet†, meticulously exam-
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Fig. 4: Visualization results on the CXRS dataset.

Table 3: The Left: Ablation study on the topological prior constraints Ltpc.
The Right: Ablation study on the weight λ.

Ltpc mIOU mDSC mSen mSpec mHD mASSD

None 69.83 80.23 81.04 99.69 21.07 2.286
Dice 70.66 81.01 80.47 99.72 19.18 2.137
MSE 70.30 80.65 80.98 99.70 19.12 2.193
BCE 70.40 80.80 79.30 99.74 21.60 2.207

λ mIOU mDSC mSen mSpec mHD mASSD

λ = 0 69.83 80.23 81.04 99.69 21.07 2.286
λ = 0.1 70.16 80.66 80.73 99.70 20.42 2.156
λ = 0.2 70.47 80.84 80.47 99.71 19.53 2.177
λ = 0.3 70.66 81.01 80.47 99.72 19.18 2.137
λ = 0.4 70.49 80.80 78.94 99.74 20.10 2.172

ining the impact of the Topology Prior Embedding Module CEM and IEM, the
significance of different weights, and the influence of various loss functions.
Ablation Study for CEM and IEM. To further validate the effectiveness of
our Connectivity prior Embedding Module (CEM) and Interactivity prior Em-
bedding Module (IEM). As shown in Table 2-left, we can see that only embedding
the CEM into the network for training has a positive impact on every rib struc-
ture. When we embed only the IEM, we observe a more substantial enhancement
in performance compared to the baseline and CEM, with an increase of 0.66%
in mIOU, an improvement of 0.68 in mDSC. Finally, we simultaneously embed
both the IEM and CEM into the network, achieving the best results. These re-
sults clearly demonstrate the effectiveness of our modules.
Ablation Study for Kernels of CEM. To investigate the impact of the choice
of fully connected convolutional kernels in the CEM on performance, we are using
five types of kernels: 3×3, 5×5, 7×7, 1×5, and 5×1, as shown in Table 2-right.
When extend the kernel to 5×5, we achieve the best result.
Ablation Study for Loss Functions. conduct ablation studies by employing
various pixel-level loss functions for Ltpc, as shown in Table 3-left, where the
"None" entry represents the outcome without the inclusion of the Ltpc. When
employing Dice loss, we attain the optimal result.
Ablation Study for Loss Weights. We introduce a parameter λ, to control
the balance of their learning, as shown in Equation 3. The experimental results
are shown in Table 3-right, where the "0" entry represents the baseline without
using Ltpc. When setting λ to 0.3, our method achieved optimal result.
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4 Conclusion

In this study, we propose the CEM and IEM to encode fixed topological prior
knowledge between ribs in CXR images as constraints into networks. Further-
more, we introduce a topological prior constraint loss, which penalizes segmen-
tation regions that violate the topological prior knowledge. However, as CXR
images are 2D projections of the chest’s 3D structure, our method primarily fo-
cuses on 2D topological relationships, overlooking the spatial relationships lost
during projection. Future work will explore more effective strategies to leverage
the spatial information of ribs.
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