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Abstract. Medical images are usually collected from multiple domains,
leading to domain shifts that impair the performance of medical im-
age segmentation models. Domain Generalization (DG) aims to address
this issue by training a robust model with strong generalizability. Re-
cently, numerous domain randomization-based DG methods have been
proposed. However, these methods suffer from the following limitations:
1) constrained efficiency of domain randomization due to their exclusive
dependence on image style perturbation, and 2) neglect of the adverse
effects of over-augmented images on model training. To address these is-
sues, we propose a novel domain randomization-based DG method, called
content style augmentation (ConStyX), for generalizable medical image
segmentation. Specifically, ConStyX 1) augments the content and style
of training data, allowing the augmented training data to better cover a
wider range of data domains, and 2) leverages well-augmented features
while mitigating the negative effects of over-augmented features during
model training. Extensive experiments across multiple domains demon-
strate that our ConStyX achieves superior generalization performance.
The code is available at https://github.com/jwxsp1/ConStyX .

Keywords: Domain generalization · Domain randomization · Medical
image segmentation · Deep features.

1 Introduction

Medical image segmentation is an important task in computer-aided diagnosis
and treatment. In recent years, this field has witnessed significant advancements,
attributed to the progress of deep learning [1]. However, learned segmentation
models encounter significant performance drops when the training and test sets
1 † Xi Chen and Zhiqiang Shen contributed equally to this work.

https://github.com/jwxsp1/ConStyX
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are sampled from different distributions, where domain shifts arise due to vari-
ations in acquisition processes and patient populations [5,19]. Domain general-
ization (DG) has been proposed to improve the generalizability of segmentation
models, with the setting that a model is trained using data from single or mul-
tiple domains and tested on unseen domains [25,17].
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Fig. 1. Visualization of original and augmented images. (a) Original images (left) and
style-augmented images (right). (b) Original images (left) and over-augmented images
(right). (c) In the deep feature space, when the feature vector of a sample moves along
a specific direction (gray dashed arrow), the resulting feature vector corresponds to an
augmented image (✓: well-augmented images or ×: over-augmented images).

Existing DG methods can be categorized into decoupling-based [4,13,7] and
domain randomization-based methods [24,26,8]. Decoupling-based methods at-
tempt to extract domain-invariant features from data by normalizing the features
or constructing dedicated modules within the model. However, these approaches
may compromise the semantic information within the features, as there is no
guarantee that only domain-specific features are eliminated, leading to a degra-
dation in the model’s discriminative capability. In contrast, domain randomization-
based DG methods aim to simulate unseen domains using source domain data.
This line of approaches can be divided into two branches: 1) image perturbation
via image reconstruction [2,24] or generation [8], and 2) feature perturbation by
transferring statistical information [26,10,21,23]. However, these methods only
augment image style [Fig. 1(a)], limiting the diversity of augmented data distri-
butions. Moreover, due to the uncontrollability of the perturbation process, it is
possible to produce over-augmented images with corrupted semantic information
and unreal image appearance [Fig. 1(b)], which degrade the model training.

To address these issues, we propose a novel content style augmentation
method (ConStyX) for generalizable medical image segmentation. Our method is
built upon the following assumption: moving a deep feature along a certain direc-
tion produces a new feature that corresponds to another sample of the same class
but contains different content5 and style information [16,18] [Fig. 1(c)]. Specif-
5 "Content" refers to substructures within a specific class region. For example, different

optic discs (class) may contain distinct optic vessels (content) in fundus images.
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ically, ConStyX consists of two components: 1) Deep Feature Augmentation
algorithm (DFA) conducts content and style augmentation, ensuring the aug-
mented data covers a wide scope for unseen target domains and 2) Augmented
Feature Utilization strategy (AFU) quantifies the contributions of augmented
features to the model training, thereby mitigating the negative impacts of over-
augmented features while fully leveraging the well-augmented ones. We evalu-
ated our method on five public fundus datasets, corresponding to five different
domains. Extensive experiments demonstrate that our method achieves better
generalization performance on unseen target domains compared with state-of-
the-art domain generalization methods.

Our contributions are three-fold:

– We propose a content style augmentation method that generates augmented
deep features by moving the original deep features toward correct directions
with appropriate degrees, thus enabling the training data to cover a wider
range of unseen domains.

– We devise an augmented feature utilization strategy to quantify the contribu-
tions of augmented features to model training, for exploiting well-augmented
features while mitigating the negative effects of over-augmented ones.

– Our ConStyX outperforms the baseline and five state-of-the-art DG methods
on the joint optic disc (OD) and optic cup (OC) segmentation benchmarks.

2 Method

Notions & Notations. Given a source domain D = {(Xi, Yi)
M
i=1}, for single

domain generalized medical segmentation, the objective is to learn a segmenta-
tion model f(·; θ) from D that shows strong generalization capability on unseen
domains. The segmentation model f(·; θ) consists of an encoder E(·; θ1) and a
segmentation head H(·; θ2). Let Zi ∈ RN×H×W be the deep features, where N ,
H, and W denote the channel, height, and width respectively, and zji ∈ RN×1×1

be the deep feature of the jth pixel for Xi with class c.
Overview. Considering the limited diversity in style augmentation and the
detrimental effects of over-augmented samples, this work aims to develop an
effective and controllable content-style augmentation method for generalizable
medical image segmentation. Our core assumption is that: moving a deep feature
along a specific direction generates a new feature corresponding to an augmented
image of the same class but with distinct style and content characteristics. Based
on this, we propose a content and style augmentation framework (ConStyX). As
illustrated in Fig. 2, ConStyX consists of two key components: 1) Deep Fea-
ture Augmentation algorithm (DFA) for intra-domain and cross-domain feature
movements under the guidance of intra-class variation and feature gradient and
2) Augmented Feature Utilization strategy (AFU) for augmented feature re-
weighting according to their contributions to model training quantified by fea-
ture similarity and prediction confidence.
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Fig. 2. Overview of the proposed Content Style Augmentation framework (ConStyX).
It includes: 1) Deep Feature Augmentation algorithm (DFA) for content-style augmen-
tation under the guidance of intra-class variation and feature gradient and 2) Aug-
mented Feature Utilization strategy (AFU) for augmented feature re-weighting.

2.1 Deep Feature Augmentation (DFA)

The fundamental concept of DFA lies in How to appropriately move the deep
features while preserving their original semantic information. To this end, we
determine the direction and degree of movement by intra-class variation and
feature gradient. Specifically, we construct two augmentation distributions,
i.e., N (0, λ1Σc) and U(0, λ2v

j
i ), from which movement vectors can be sampled

for feature augmentation:

ẑji = zji +αic +αcd, αic ∼ N (0, λ1Σc), αcd ∼ U(0, λ2v
j
i ) (1)

where αic represents the intra-domain augmentation vector determined by cap-
turing the maximum intra-domain variation, and αcd denotes the cross-
domain augmentation factor guided by feature gradients, Σc refers to a class-
conditional covariance, vj

i indicates feature mask, and λ1 and λ2 are two scaled
factors. Through these movements, deep features are appropriately augmented
along the correct directions with proper degrees, generating augmented features
that correspond to content-style augmented samples in the image space.

Intra-class variation. It yields the movement vector αic ∼ N (0, λ1Σc) to
enable features to move along the maximum intra-class variation direction. Con-
cretely, we extract a feature map Zi from image Xi and establish a zero-mean
multivariate normal distribution for the feature points corresponding to a certain
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class based on the label Yi. Let µ(t)
c and Σ

(t)
c represent the mean and covariance

matrix of the cth class features in the first t iterations, which are estimated using
online weighted averaging; µ̄(t)

c and Σ̄
(t)
c are the mean and covariance matrix of

the features of cth class in the tth iteration; n(t)
c denotes the total number of deep

features belonging to cth class in the first t iterations, and m
(t)
c denotes the num-

ber of deep features belonging to cth class in the tth iteration. For the cth class
feature points, we establish the multivariate normal distribution N (0, λ1Σc),
where the class-conditional covariance Σc in the first t iterations is obtained by:

Σ(t)
c =

n
(t−1)
c Σ

(t−1)
c +m

(t)
c Σ̄

(t)
c

n
(t−1)
c +m

(t)
c

+
n
(t−1)
c m

(t)
c ∆µc∆µ⊤

c

(n
(t−1)
c +m

(t)
c )2

(2)

where µ
(t)
c =

n(t−1)
c µ(t−1)

c +m(t)
c µ̄(t)

c

n
(t−1)
c +m

(t)
c

, ∆µc = µ
(t−1)
c − µ̄

(t)
c , and n

(t)
c = n

(t−1)
c +m

(t)
c .

Feature gradient. By capturing the intra-class variations, the features can be
forced to move along the direction of the most significant intra-class variation.
However, this strategy limits the augmentation to be operated within the source
domain. To further expand the augmented training data distribution over unseen
domains, we introduce gradient-guided feature movement to generate another
moving vector αcd ∼ U(0, λ2v

j
i ), which is applied along the minimum gradient

directions to ensure cross-domain and semantic-invariant content style augmen-
tation. Specifically, we first obtain the gradient of zji : grad

j
i = ∇Lseg(P

j
i , Y

j
i ),

where Lseg denote the segmentation loss and P j
i represents the model prediction.

Note that model parameters are not updated in this process. Then, we define
the feature mask vj

i ∈ RN×1×1 as:

(vj
i )n =

{
1 if n ∈ posji
0 otherwise

(3)

where the position of the minimum k partial derivatives in zji are obtained by:
posji = MinSort(gradji )[: k]. MinSort(·) is an ascending sorting function.

Based on the feature mask vj
i , we construct the uniform distribution U ∼

(0, λ2v
j
i ) to for further feature augmentation, where λ2 denotes scaled factor.

2.2 Augmented Feature Utilization (AFU)

Although DFA aims to move deep features in appropriate directions for content
style augmentation, it inevitably generates new features with distinct charac-
teristics. We categorize these features into three types: 1) trivial-augmented
features: maintain similar information with the original features, 2) over-
augmented features lose the original information and even become noise, and
3) well-augmented features augment the content and style information ap-
propriately while maintaining their original semantic information. It is crucial
to suppress the adverse effects of over-augmented features during model training
while sufficiently exploiting the well-augmented ones.
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To this end, we introduce AFU, which leverages both feature similar-
ity and prediction confidence to determine the contributions of the three
types of augmented features to model training. Specifically, we compute the
cosine similarity map Si between an original deep feature map Zi and its
augmented counterpart Ẑi, as well as the prediction confidence Fi = 1 −
MinMax(−

∑C
m=1(P̂i)mlog((P̂i)m)) for augmented feature Ẑi (where MinMax(·)

denotes a Min-Max normalization operation, and Fi is normalized to [0, 1]). For-
mally, based on Si and Fi, the three type augmented features are defined as: 1)
the augmented feature points with a cosine similarity higher than threshold τ
are considered trivial-augmented features, 2) those with a similarity lower than
τ and larger prediction confidence are divided as well-augmented features, and
3) those with a similarity lower than τ and lower confidence are regarded as over-
augmented features. During the training process, the weight Wi is employed to
determine the contributions of the augmented feature Ẑi to model training:

W j
i =

{
1 if Sj

i > τ

eF
j
i − 1 otherwise

(4)

which serves as a pixel-wise weight for the segmentation loss (combining cross-
entropy and Dice loss).

3 Experiment

Datasets and Evaluation Metrics. Datesets: We use five fundus datasets
[11,9,22,15] corresponding to five different domains for joint segmentation of
optic cup (OD) and optic disc (OC): BinRushed (195 images), Magrabia (95
images), REFUGE (400 images), ORIGA (650 images), and Drishti-GS (101
images); each image is resized to 512× 512. We adopt the extremely challenging
single-domain generalization setting, where one of the datasets is considered the
source domain and divided into training and validation sets with a 9:1 ratio, while
the remaining datasets serve as a test set. Evaluation metrics: Dice similarity
coefficient (DSC, %).
Implementation Details. Experimental environment: All experiments are con-
ducted using PyTorch [12] on a Tesla V100 with 32GB GPU memory. U-Net [14]
with a modified ResNet-34 encoder [6] is used as the segmentation backbone for
both our ConStyX and all compared methods. Hyperparameter setting: We set
k = 5, λ1 = 1, and λ2 = 0.5 for the DFA module, and the threshold τ = 0.6
for the AFU module. ConStyX is optimized using the SGD optimizer with a
momentum of 0.99 and an initial learning rate of 0.001 decayed according to a
polynomial rule. The batch size and the number of training epochs are 8 and
100, respectively.

3.1 Comparison with other DG methods

We conduct comparative experiments over various state-of-the-arts, including:
statistics transfer-based (MixStyle [26], DSU [10], EFDM [21], TriD [3], and
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Table 1. Comparative results of cross-domain segmentation performance (OD, OC).
The best results are highlighted in bold.

Method Domain1 Domain2 Domain3 Domain4 Domain5 Average
DSC ↑ DSC ↑ DSC ↑ DSC ↑ DSC ↑ DSC ↑

MixStyle [26] (86.67, 64.86) (87.34, 73.78) (86.83, 67.34) (78.03, 59.49) (83.52, 67.27) 75.51
DSU [10] (86.64, 65.99) (87.44, 74.20) (86.38, 66.80) (78.77, 57.98) (83.44, 66.00) 75.36

EFDM [21] (86.32, 65.11) (88.03, 75.62) (86.55, 67.34) (77.02, 58.22) (83.66, 67.60) 75.55
TriD [3] (84.03, 63.73) (85.75, 70.16) (86.93, 67.70) (75.46, 66.96) (84.85, 57.38) 74.30
CSU [23] (87.58, 69.19) (87.50, 74.91) (86.87, 67.55) (79.58, 57.93) (83.50, 66.46) 76.11

RandConv [20] (85.87, 65.99) (88.10, 76.05) (86.47, 65.77) (79.33, 57.79) (83.30, 67.52) 75.62
MoreStyle[24] (80.38, 59.60) (88.47, 64.32) (82.63, 63.85) (77.07, 51.91) (78.14, 51.63) 69.80
CCSDG [7] (86.21, 63.55) (90.34, 78.24) (87.18, 65.44) (81.00, 63.16) (82.21, 64.57) 76.19

ConStyX (ours) (88.95, 72.55) (89.86, 77.61) (88.17, 67.22) (81.09, 67.50) (86.67, 69.19) 78.88

CSU [23]), random convolution-based (RandConv [20]), adversarial noise-based
(MoreStyle [24]), and feature disentanglement-based (CCSDG [7]) methods.

Overall, both the segmentation performance in Table 1 and the qualitative
results in Fig. 3 suggest that our ConStyX consistently outperforms other DG
methods, showing its superior generalization capability for cross-domain medi-
cal image segmentation. Specifically, the five statistical information transferred-
based methods and the random convolution-based method yield similar seg-
mentation results. This phenomenon is attributed to their limited augmentation
efficacy (only augmenting image style), resulting in augmented samples that only
cover a narrow range of unseen domains. Due to the adversarial noise generat-
ing augmented samples that deviate significantly from real images, MoreStyle
achieved unsatisfactory results. Meanwhile, CCSDG attains the second-highest
average DSC across domains, i.e., 76.19 %, by integrating feature disentangle-
ment and various style augmentation techniques. In contrast, our ConStyX out-
performs the second-highest result by 2.09% in terms of DSC, due to the advan-
tages of the content-style augmentation to generate diverse augmented samples
and the feature re-weighting strategy to fully leverage well-augmented features.

3.2 Ablation study

Analysis of the proposed components. We conduct an ablation study on
the five domains to evaluate the effect of our proposed modules including DFA
and AFU. In Table 2, one can observe that the segmentation performance grad-
ually increases as each component is incorporated into our method. Compared
with the baseline, our final model obtains average segmentation improvements
of 9.17% and 9.78% across five distinct domains, significantly improving the
generalizability of the baseline model.
Investigation of distribution forms. To investigate the influence of distri-
bution forms on feature movement operations, we conduct a comparative exper-
iment on the feature gradient-guided movement by constructing two gradient-
guided augmentation distributions: a uniform distribution αcd ∼ U(0, λ2v

j
i ) and

a normal distribution αcd ∼ N (0, λ2v
j
i I). As shown in Table 3, the segmentation
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Fig. 3. Visualization of OD and OC segmentation results. Blue dashed circles highlight
some regions with significant differences in the segmentation results.

Table 2. Performance (OD, OC) of ablation study on joint segmentation of OD and
OC. The best results are highlighted in bold.

Method Domain1 Domain2 Domain3 Domain4 Domain5 Average
DSC ↑ DSC ↑ DSC ↑ DSC ↑ DSC ↑ DSC ↑

Baseline (86.21, 53.02) (85.81, 58.05) (78.73, 50.80) (78.41, 57.56) (81.72, 60.72) 69.10
Baseline+DFA (87.87, 69.39) (89.90, 76.85) (88.11, 66.89) (79.98, 68.03) (86.67, 69.04) 78.27

Baseline+DFA+AFU (88.95, 72.55) (89.86, 77.61) (88.17, 67.22) (81.09, 67.50) (86.67, 69.19) 78.88

Table 3. The influence of different distribution and position schemes for feature aug-
mentation. The best results are highlighted in bold.

Method Domain1 Domain2 Domain3 Domain4 Domain5 Average
DSC ↑ DSC ↑ DSC ↑ DSC ↑ DSC ↑ DSC ↑

Normal Distribution (88.74, 67.56) (89.75, 77.76) (87.49, 65.67) (81.69, 67.37) (87.66, 68.80) 78.25
Uniform Distribution (88.95, 72.55) (89.86, 77.61) (88.17, 67.22) (81.09, 67.50) (86.67, 69.19) 78.88

Random position (87.32, 66.16) (90.19, 77.00) (87.22, 66.85) (81.39, 67.63) (85.86, 68.56) 77.82
Maximum k position (85.58, 56.55) (88.76, 74.71) (88.46, 65.76) (80.22, 63.40) (86.96, 67.86) 75.83
Minimum k position (88.95, 72.55) (89.86, 77.61) (88.17, 67.22) (81.09, 67.50) (86.67, 69.19) 78.88

results of these two distribution forms are comparable, validating the robustness
of our method to different distributions.

Analysis of perturbation positions. To verify that perturbations at the po-
sitions with the minimum partial derivatives have minimal impact on feature
semantics, we conducted a perturbation position analysis experiment across five
domains. As shown in Table 3, perturbing the k positions with the minimum
partial derivatives resulted in the best performance of the model, confirming the
importance of considering direction during the feature moving process.
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4 Conclusion

We propose a novel domain randomization-based DG method, called ConStyX,
for generalizable medical image segmentation. To enable the source domain data
to cover a wider range of unseen domains, ConStyX augments the content and
style of the training data by moving the deep features toward correct directions
with proper degrees. Besides, we define three types of augmented features and as-
sign different weights to them to mitigate the negative impact of over-augmented
features on model training, while fully leveraging well-augmented features. Ex-
tensive experiments on five fundus datasets demonstrate that ConStyX achieves
compelling performance over the state-of-the-art methods.
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