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Abstract. Reconstructing temporally coherent 3D meshes of the beat-
ing heart from multi-view MR images is an important but challenging
problem. The challenge is entangled by the complexity in integrating
multi-view data, the sparse coverage of a 3D geometry by 2D image slices,
and the interplay between geometry and motion. Current approaches of-
ten treat mesh reconstruction and motion estimation as two separate
problems. Here we propose Mesh4D, a novel motion-aware method that
jointly learns cardiac shape and motion, directly from multi-view MR
image sequences. The method introduces three key innovations: (1) A
cross-attention encoder that fuses multi-view image information, (2) A
transformer-based variational autoencoder (VAE) that jointly model the
image feature and motion, and (3) A deformation decoder that gener-
ates continuous deformation fields and temporally smooth 3D+t cardiac
meshes. Incorporating geometric regularisation and motion consistency
constraints, Mesh4D can reconstruct high-quality 3D+t meshes (7,698
vertices, 15,384 faces) of the heart ventricles across 50 time frames, within
less than 3 seconds. When compared to existing approaches, Mesh4D
achieves notable improvements in reconstruction accuracy and motion
smoothness, offering an efficient image-to-mesh solution for quantifying
shape and motion of the heart and creating digital heart models.

Keywords: 3D+t mesh reconstruction · Shape and motion modelling ·
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1 Introduction

Cardiac imaging is essential for assessing the structure and function of the heart,
a dynamic organ that undergoes continuous deformation during its rhythmic con-
traction and relaxation [1,18]. Cine cardiac MR (CMR) is one of the commonly
used imaging modalities due to its excellent soft tissue contrast. However, it is
a particularly challenging task to reconstruct 3D+t meshes from the cine CMR
images, which cover the heart in multiple sparse views with anisotropic resolu-
tion. This has become a bottleneck limiting the clinical analyses of cardiac shape
and motion, and computational modelling studies for the heart.

Current approaches for 3D+t cardiac mesh reconstruction can be broadly
classified into segmentation-based methods and mesh-based methods. Segmentation-
based methods extract meshes in two stages, an image segmentation stage,
followed by a mesh construction stage [11,25,28]. However, they may struggle
to maintain the temporal coherence for meshes between different time frames.
Mesh-based methods fit a template mesh to the images and track the defor-
mation of the mesh during cardiac motion [6,7,10,13,15]. Mesh-based methods
improve the anatomical plausibility of the meshes, but could not make full use
of the boundary information provided by the segmentation. Both segmentation-
based and mesh-based methods may integrate statistical shape models (SSMs)
to improve robustness by imposing shape priors [9,17,30]. A key limitation of
existing methods is that mesh reconstruction and motion estimation are solved
in separate steps, leading to suboptimal performance.

Another challenge in cardiac mesh reconstruction is that cardiac MR images
have limited through-plane resolution [28], making it difficult to reconstruct high-
resolution shape and motion representations. Multi-view imaging has been ex-
plored to address this, using images acquired from multiple planes to compensate
for the low through-plane resolution [6,13,17,29]. Cross-modality learning, such
as integrating cardiac MR and high-resolution CT images, has also been explored
to improve shape and motion estimation from anisotropic MR images [7,22]. Ex-
isting 3D+t mesh reconstruction methods primarily focus on improving spatial
accuracy, and may not always enforce motion consistency across time frames,
leaving motion consistency an open challenge.

To overcome these limitations, we introduce Mesh4D, a motion-aware multi-
view variational autoencoder (VAE) method for reconstructing 3D+t cardiac
meshes directly from multi-view cardiac MR image sequences. Unlike tradi-
tional methods that treat mesh reconstruction and motion estimation sepa-
rately, Mesh4D jointly learns both cardiac shape and motion from multi-view
image sequences. This approach ensures the temporal coherence of the meshes
across time. The key innovations include: 1) A cross-attention multi-view en-
coder, which integrates image features across multiple views; 2) A transformer-
based VAE model, which learns long-range dependencies for multi-view features
and motion dynamics; 3) A continuous deformation decoder, which reconstructs
3D+t meshes by learning vertex-wise displacements, ensuring anatomical corre-
spondence and temporal coherence. Trained and evaluated on 1,984 multi-view
CMR imaging scans, Mesh4D significantly improves reconstruction accuracy and
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Fig. 1: Mesh4D framework. The multi-view encoder learns and integrates fea-
tures for multi-view cardiac MR image sequences (SAX, 2CH, 4CH). The
Transformer-based VAE models temporal dependencies, where the Transformer
encoder models the temporal dependencies among the multi-view across time
frames, and the Transformer decoder generates a sequence of latent representa-
tions. The continuous deformation field decoder learns vertex-wise deformation
fields to warp a template mesh, producing anatomically consistent and tempo-
rally smooth 3D+t cardiac meshes.

motion smoothness compared to existing methods, offering a unified and efficient
framework for high-quality 4D cardiac shape and motion modelling.

2 Methods

This section introduces Mesh4D, a framework for reconstructing 3D+t cardiac
meshes directly from multi-view MR image sequences, illustrated in Figure 1.
Mesh4D consists of three main components: 1) a multi-view encoder that ex-
tracts features from multi-view cardiac MR image sequences, including short-axis
(SAX), long-axis two-chamber (2CH), and long-axis four-chamber (4CH) views.
The features are integrated using cross-attention to create joint multi-view fea-
tures. 2) a Transformer-based VAE, where the Transformer encoder captures
long-range temporal dependencies among the multi-view features across time
frames, and the Transformer decoder generates a sequence of smoothly evolv-
ing latent representations {z′t|t = 0, 1, . . . , T − 1}, with T denoting the number
of time frames. 3) a continuous deformation field decoder that takes the latent
representations as input and generates vertex-wise deformation fields to warp a
template mesh, creating anatomically consistent and temporally smooth 3D+t
cardiac meshes.

2.1 Architecture

Multi-View Encoder In cardiac cine MR, the 3D geometry and motion of the
heart is captured by multiple views, including an anisotropic 3D image sequence
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from the SAX view and 2D image sequences from the 2CH and 4CH views.
To extract spatial features from these multi-view image sequences, three view-
specific encoders are developed: a 3D convolutional encoder for the SAX view
and two 2D convolutional encoders for the 2CH and 4CH views. These encoders
independently process each time frame, producing feature representations for
each view.

After feature extraction, 2CH and 4CH features are concatenated into a
unified representation to be used as keys and values in the cross-attention mod-
ule. The SAX features serve as queries, attending to the combined 2CH-4CH
features to extract complementary long-axis information. This fusion strategy
helps SAX integrate complementary structural information from 2CH and 4CH
views to augment limited through-plane resolution of SAX view.
Latent Motion Modelling via Transformer-based VAE To model tem-
poral dependencies in the sequence of multi-view features, the extracted fea-
tures are processed by a Transformer-based VAE [26,14]. In this formulation,
the Transformer encoder serves as the probabilistic encoder of the VAE, map-
ping the sequence of multi-view features into a latent space. The Transformer
decoder then reconstructs temporally smooth latent representations from the
VAE latent space.

At each time frame t, the multi-view encoder generates a feature representa-
tion, forming a sequence of tokens Z = {z0, z1, . . . , zT−1}. Two learnable distri-
bution parameter tokens, µtoken and Σtoken, inspired by the [class] token in
the vision Transformer [8], are appended at the beginning of the sequence. The
Transformer encoder processes the input sequence to estimate the mean (µ) and
variance (Σ) of a latent distribution. The latent variable z is sampled from this
distribution, using the reparameterisation trick: z = µ+ ϵ ·Σ. The Transformer
decoder takes the sampled latent variable z and sinusoidal temporal embeddings
as input. The temporal embeddings are calculated from the time frame index t
[8], representing the temporal position in a sequence. The output of the Trans-
former decoder is a sequence of latent representations Z ′ = {z′0, z′1, . . . , z′T−1}.
Continuous Deformation Field Decoder Instead of directly predicting ab-
solute mesh coordinates, Mesh4D reconstructs cardiac motion by learning a tem-
porally consistent deformation field that smoothly evolves across time steps [5].
The continuous deformation field decoder takes the sequence of latent represen-
tations {z′t} as input, and generates a deformation field of vertex-wise displace-
ments for each time frame. The deformation field is used to warp a publicly
available template mesh [3], generating 3D+t cardiac meshes across the time
frames.

2.2 Loss Functions

We train the Mesh4D model using a combination of loss terms that accounts for
both geometric properties and motion consistency.
Boundary Alignment. Following [16], we enforce the alignment between the
predicted cardiac mesh Vt at time frame t and the boundary V ∗ derived from
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the ground truth segmentation for all time frames. The boundary alignment loss
is defined as a one-sided Chamfer distance:

Lbound =
1

|V ∗|
∑

v∗∈V ∗

min
vt∈Vt

∥vt − v∗∥2, (1)

where vt and v∗ denote the predicted mesh vertex coordinate and segmenta-
tion boundary coordinate, respectively. This term ensures geometric accuracy
by aligning the reconstructed 3D mesh with the segmentation boundary, which
are 2D contours.

Template Alignment. We introduce an additional template alignment loss
Ltemp to enforce 3D shape consistency by minimising the Chamfer distance be-
tween the reconstructed 3D mesh and the 3D template mesh pre-registered to the
subject space using non-rigid registration. This term ensures that the predicted
mesh maintain a 3D geometry consistent with the template mesh.

Geometric Regularisation. To ensure high-quality mesh geometry and reduce
distortions, we apply a loss for edge length alignment Leg, a loss for normal
consistency Lnm and a loss for Laplacian smoothing Llap. The loss Leg aligns
the edge lengths of each face on the predicted mesh with those of the template,
preventing excessive stretching or compression. The loss Lnm reduces the angular
disparity between adjacent face normals [27]. The Laplacian smoothing term Llap
constrains vertex deviations to improve local smoothness [19].

Motion Consistency. Cardiac motion exhibits inherent temporal smoothness
due to physiological constraints. The continuity of myocardial tissue and the
electromechanical activation process prevents abrupt changes in shape and mo-
tion [2,12,24]. To leverage the physiological prior, we introduce a motion con-
sistency loss that enforces temporal consistency of velocities across consecutive
time frames. Let ∆vt = vt+1 − vt denote the vertex displacement from time t to
t+ 1. The vertex velocity is defined as ut =

∆vt

∆t and becomes ∆vt if we let the
uniform time step to be ∆t = 1. The motion consistency loss is formulated as,

Lmc =
1

|Vt|

T−2∑
t=1

∑
vt∈Vt

∥∆vt −∆vt−1∥2 (2)

This term encourages smooth acceleration and penalises abrupt changes in vertex-
wise velocities.

Latent Space Regularisation. As in a standard VAE [26,14], the KL diver-
gence loss LKL is used to regularise the latent distribution to be close to a normal
distribution N (0, I). The total loss for Mesh4D is defined as:

L = Lbound +λtempLtemp +λegLeg +λnmLnm +λlapLlap +λmcLmc +βLKL. (3)
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3 Experiments and Results

3.1 Dataset and Experimental Setup

This study used a dataset of CMR images from 1,984 subjects in the UK
Biobank, split into 1,480 for training, 174 for validation, and 330 for test. For
each subject, image sequences were acquired from three standard views: SAX,
2CH, and 4CH, with each sequence consisting of 50 time frames. The template
mesh contains three anatomical structures: left ventricular endocardium (LV
Endo), left ventricular epicardium (LV Epi), and right ventricular (RV). It con-
sists of 7,698 vertices and 15,384 faces. Mesh4D was trained for 200 epochs with
a batch size of 1 subject, a learning rate of 1e-3, and a weight decay of 1e-4.
The loss function incorporates multiple weighted terms: λtemp = 0.01, λeg = 1,
λnm = 10, λlap = 10, λmc = 1, and β = 0.01. The Adam optimizer was used for
training, and early stopping was applied to prevent overfitting. All experiments
were conducted on an Nvidia RTX A5000 GPU with 24 GB of GPU memory. For
the boundary alignment loss Lbound, the segmentation boundary are 2D contours
derived from segmentations SAX, 2CH, and 4CH views at all time frames. The
segmentations were generated using a public available model [4] with manual
quality control. Contours from different views were aligned into the same world
coordinate system using header information from Nifti images.

Evaluation Metrics. The accuracy of the reconstructed 3D+t cardiac meshes
is assessed using four metrics: Hausdorff distance (HD), average symmetric
surface distance (ASSD), Pearson’s correlation coefficient (r), and root mean
squared error (RMSE). HD assesses the maximum deviation between the recon-
structed and ground truth meshes, whereas ASSD indicates the average bidirec-
tional surface distance. Pearson’s r gauges temporal consistency by comparing
ventricular volume curves of the reconstructed mesh against those of the ground
truth, with values closer to 1 indicating better alignment. RMSE represents the
volumetric differences between the reconstructed meshes and ground truth in
millilitres (mL), with lower values denoting greater accuracy.

Competing Methods. Mesh4D was evaluated against conventional and deep
learning approaches for reconstructing 3D+t cardiac meshes. The B-spline free-
form deformation method (FFD) [21] performs image registration and deforms
a template mesh to the image space for each subject at each time frame. 4DSeg-
ment [9] is a two-stage method combining learning-based segmentation and at-
las propagation to reconstruct cardiac meshes. MeshHeart [20] performs super-
resolution for the images and their segmentations and then aligns the template
mesh to the high-resolution image segmentation at ED and ES. Motion tracking
is performed between the images of adjacent time frames using Deepali [23] and
the resulting deformation field propagates the mesh to all time frames.

http://www.ukbiobank.ac.uk/register-apply
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Table 1: Comparison of cardiac mesh reconstruction methods
Methods HD (mm) ↓ ASSD (mm) ↓ Pearson’s r ↑ RMSE: LV (mL) ↓ RMSE: RV (mL) ↓ Time (s)
FFD [21] 6.517±1.666 2.661±0.543 0.965±0.021 13.752±5.041 29.115±7.335 ∼ 600
4DSegment [9] 6.980±2.854 2.686±0.597 0.983±0.013 9.665±3.422 19.971±7.253 ∼ 1200
MeshHeart [20] 5.284±2.714 2.003±0.597 0.984±0.012 9.464±4.265 9.164±5.206 445.58
Proposed 4.350±2.13 1.714±0.548 0.986±0.011 6.979±3.297 8.264±3.981 2.89

ASSD MetricsHD Metrics

ED

ES

Sequence

ED

Sequence

ES

Fig. 2: Mesh reconstruction performance on the test set. a) Radar plot
summarising HD and ASSD (unit: mm) across cardiac phases (ED, ES, whole se-
quence) for different structures (LV Endo, LV Epi, RV, total), compared between
different methods. b) LV and RV volume curves over time from reconstructed
meshes using Mesh4D compared to segmentation-derived volume curves. The
curves shown are averaged across the test set and the shades denote confidence
intervals.

3.2 Results

Comparison with Existing Methods. Table 1 shows that Mesh4D outper-
forms FFD, 4Dsegment, and MeshHeart across all evaluation metrics. The pro-
posed method achieves the lowest HD (4.350 mm) and ASSD (1.714 mm), indi-
cating improved reconstruction accuracy. Pearson’s correlation coefficient (r) of
0.986 confirms a strong agreement between the reconstructed LV and RV volumes
and segmentation-derived reference volumes. Additionally, Mesh4D achieves the
lowest RMSE for LV (6.979 mL) and RV (8.264 mL), demonstrating superior
volumetric consistency. Beyond performance improvements, Mesh4D also sub-
stantially reduces computational time. Unlike existing methods that sequentially
reconstruct each time frame, Mesh4D generates the full 3D+t cardiac mesh se-
quence simultaneously, completing inference in just 2.89 seconds, whereas other
methods require over 400 seconds. Figure 2 further illustrates the performance,
where the radar plot (Figure 2a) summarises HD and ASSD across different car-
diac phases, and Figure 2b compares LV and RV volume curves over time. The
proposed method provides more accurate and stable volume estimations, closely
matching the segmentation-derived reference volumes.
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Table 2: Ablation studies of Mesh4D. The best scores are in bold.
Ablation HD (mm) ↓ ASSD (mm) ↓ Pearson’s r ↑ RMSE: LV (mL) ↓ RMSE: RV (mL) ↓
Single view 5.014±1.444 2.039±0.543 0.984±0.012 9, 503±3.767 21.529±5.684

w/out CD 5.515±4.156 1.982±0.591 0.984±0.012 9.600±4.416 8.879±5.047

w/out Ltemp 4.817±1.460 1.983±0.537 0.984±0.012 9.446±3.921 8.337±4.047

w/out Lmc 5.015±2.110 2.033±0.593 0.982±0.014 8.512±3.106 13.794±6.307

Proposed 4.350±2.13 1.714±0.548 0.986±0.011 6.979±3.297 8.264±3.981

SAX

4CH

2CH

Fig. 3: Visualisation of reconstructed 3D+t meshes(blue), which are closely
aligned with the segmentation contours (red) extracted from segmentation map
on SAX, 4CH and 2CH view images across time. Our model captures temporal
smoothness and anatomical fidelity. Image data reproduced by permission of UK
Biobank.

Ablation Study To analyse the contributions of different components in Mesh4D,
ablation experiments were conducted (Table 2). Removing the continuous de-
formation field (w/out CD) and replacing it with a linear-layer-based decoder
that directly outputs mesh vertices results in an increase in HD (5.515 mm)
and ASSD (1.982 mm), demonstrating its role in improving mesh consistency.
Excluding alignment loss (Ltemp) results in a slight degradation in anatomi-
cal accuracy, with HD increasing to 4.817 mm and RMSE increasing for LV
and RV. When motion-consistency loss (Lmc) is removed, HD (5.015 mm) and
ASSD (2.033 mm) deteriorate, and RMSE for RV significantly increases to 13.794
mL, indicating the necessity of enforcing temporal smoothness for accurate mo-
tion tracking. Figure 3 and the supplementary video visualises the reconstructed
cardiac meshes overlaid on different views. The meshes closely align with the
anatomical boundary of the two ventricles and they move smoothly across time.
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4 Conclusion

We propose a novel motion-aware multi-view VAE framework for 3D+t cardiac
mesh reconstruction, directly from multi-view image sequences. By integrating
multi-view image encoders, Transformer-based latent modelling, and a continu-
ous deformation decoder, Mesh4D achieves anatomically consistent and tempo-
rally smooth 3D+t mesh reconstruction. Our method provides a computationally
efficient tool for 3D+t cardiac shape and motion analysis, and lay the foundation
for future work for computational modelling of the heart.
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