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Abstract. Due to the high stakes in medical decision-making, there is
a compelling demand for interpretable deep learning methods in med-
ical image analysis. Concept-based interpretable models, which predict
human-understandable concepts (e.g., plaque or telangiectasia in skin
images) prior to making the final prediction (e.g., skin disease type), pro-
vide valuable insights into the decision-making processes of the model.
However, existing concept-based models often overlook the intricate re-
lationships between image sub-regions and treat concepts in isolation,
leading to unreliable diagnostic decisions. To overcome these limitations,
we propose a Concept-induced Graph Perception (CGP) Model for inter-
pretable diagnosis. CGP probes concept-specific visual features from var-
ious image sub-regions and learns the interdependencies between these
concepts through neighborhood structural learning and global contex-
tual reasoning, ultimately generating diagnostic predictions based on the
weighted importance of different concepts. Experimental results on three
public medical datasets demonstrate that CGP mitigates the trade-off
between task accuracy and interpretability, while maintaining robustness
to real-world concept distortions.

Keywords: Explainable diagnosis · Concept-based interpretable model·
Graph reasoning.

1 Introduction

Black-box deep learning methods have shown great promise in medical image
analysis, offering the potential to revolutionize healthcare diagnostics and treat-
ments, such as pneumonia detection [24, 21] and thyroid nodule diagnosis [26,
27]. Despite the encouraging performance, their opaque nature raises concerns
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about interpretability and trust [2, 12]. Therefore, it is crucial to develop inter-
pretable approaches in medical image analysis to enhance understanding of the
reasoning behind predictions [8, 18].

Fig. 1. (a) Black-box model diagnosis procedure. (b) Concept-based model diagnosis
pipeline. (c) Our CGP model mimics expert diagnosis for more accurate and inter-
pretable predictions.

Recently, concept-based approaches have been growing in popularity within
interpretable deep learning, as they establish causal relationships between a set
of human-understandable concepts and the final model decisions [1, 28]. A con-
cept refers to a feature that is intuitively understandable by humans within
the results generated by a model or a feature directly defined by the user [18,
17]. Specifically, unlike end-to-end black-box models in Fig. 1(a) that directly
predict diagnostic outcomes from medical images, concept-based models first ex-
tract clinically relevant intermediate concepts from the input images and then
predict the final diagnostic category based on these concepts. As shown in Fig.
1(b), concept-based approaches rely on features (such as lesion margin and cal-
cification) to differentiate between malignant and benign tumors. For example,
concept activation vectors (CAVs) [10] are used to project image representations
into a concept subspace and subsequently verify whether the aggregated image
representations contain clinical concepts. Concept Bottleneck Models (CBMs)
[14], one of the most representative approaches, operate by first generating con-
cepts from the input and then predicting the final label based on the identified
concepts. Concept Embedding Models (CEMs) [5] improve CBMs by introducing
positive and negative semantics to leverage high-level features in task prediction.

However, the existing studies have two limitations in the application of con-
cept learning to clinical diagnosis: (1) Most existing methods rely on image-level
features to learn concept information. In contrast, experts first identify symp-
toms by analyzing semantic concepts within different sub-regions of a medical
image before making a diagnosis. Existing methods overlook the intricate seman-
tics at the sub-region level, leading to unreliable concept detection. (2) Existing
methods map input data into isolated concept embeddings or scalar concept
scores for downstream diagnostic tasks. In clinical practice, however, experts
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make a diagnosis based on the interdependence of various concepts. These meth-
ods overlook critical interrelationships and are insufficient to provide in-depth
reasoning for model diagnostic inference.

To address these issues, we propose an interpretable model called the Concept-
induced Graph Perception (CGP) model that simulates expert diagnosis in Fig.
1(c). CGP first introduces a Concept-induced Adaptive Perception (CAP) mod-
ule, which performs concept modeling and enables region-level feature perception
under image-level label supervision. Building on this, CGP presents a Dual-scale
Concept Graph Bottleneck (DCGB), which assesses different concept weights
based on neighborhood structural learning and global contextual reasoning, and
then makes a final diagnostic judgment. Specifically, our contributions are as
follows:

(1) We propose CGP, an interpretable model for diagnosis. It takes a step
toward mimicking the reasoning process of black-box models and provides log-
ical, concept-level explanations for final diagnostic decisions. We provide both
qualitative and quantitative results to demonstrate its state-of-the-art efficacy
and reliability.

(2) We propose CAP, which employs human-interpretable concepts to guide
and regularize the extraction of sub-region visual features through attention.
CAP provides fine-grained visual-semantic information for subsequent relation-
ship reasoning, while enhancing concept detection accuracy.

(3) We design DCGB to simulate the idea of diagnosis by clinical experts.
It builds dual-scale graph reasoning to identify the importance of each concept
and form final diagnostic predictions based on different concept weights.

2 Method

Fig. 2 illustrates the overall framework of our CGP model for interpretable
computer-aided diagnosis. CGP incorporates the CAP (Section 2.1) module for
concept modeling and the DCGB (Section 2.2) for assessing concept weights via
structural and contextual reasoning, ultimately generating accurate diagnostic
judgments.

2.1 CAP for Sub-region Perception by Image-level Label

CAP simulates the expert diagnosis process and performs concept modeling,
enabling the perception of region-level feature space under the supervision of
image-level labels. It involves 3 steps: Concept Modeling, Perception Guidance,
and Optimization Stage.

In Concept Modeling, CAP identifies the attributes related to diseases and
models these attributes in a form that the model can comprehend. Based on the
image attributes of interest to clinical experts, a set of k concept classes is used
to represent the attributes. In the concept learning process, CAP proposes using
CLIP [22] pre-trained models to enable the model to understand the defined
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Fig. 2. The overall pipeline of our proposed framework simulates the clinical decision-
making process through two main modules: CAP and DCGB. CAP extracts human-
interpretable concept features from diverse sub-regions using image-level prompts.
These visual-semantic features are structured into a concept graph, where DCGB per-
forms dual-scale reasoning to model both neighborhood structural and global contex-
tual dependencies. The final diagnosis is made by aggregating the weighted contribu-
tions of each concept, enabling accurate predictions with faithful visual and textual
explanations.

concept text c, as embeddings C0 = [c1, c2, . . . , ck] ∈ Rk×d. The constructed
concept could be treated as the concept space for clinical diagnosis.

In Perception Guidance, CAP extracts the visual features of medical image
x and regularizes the features focusing on the sub-regions related to the diag-
nosis according to the concept space. The abundant visual features C

(1)
n are

extracted by a backbone network and a self-attention module. The process can
be expressed as C

(1)
n = SelfAttn(Ṽx, Ṽx, Vx) ∈ RHW×d, where Vx ∈ RHW×d

represents the linear projection of the backbone network-extracted visual fea-
tures V0 ∈ RH×W×d0 , and the tilde denotes the original vectors modified by
adding positional embeddings [25]. For the extracted feature sequence C

(1)
n ,

CAP guides perception progress by associating the concept space with the vi-
sual feature, focusing on concept-related visual features through cross-attention:
C

(2)
n = CrossAttn(C̃

(1)
n−1, C̃

(1)
n , C

(1)
n ) ∈ Rk×d. Since concepts correspond to dif-

ferent image regions, visual features with high responses to the learned concepts
represent the relevant regions. As a result, the outputs Cn = FFN(C

(2)
n ) ∈ Rk×d

focus on the most relevant image regions for each concept label, effectively in-
jecting class-specific visual context into the queries.

In Optimization Stage, concept-based learning is formulated to guide the
establishment of correlations. CAP utilizes the concept-guided visual-semantic
extractor to predict clinical concept features from medical images and obtain
concept probabilities pc through a fully connected layer. The concept detection
task is trained using a simplified asymmetric loss [15] LASL(pc, c) , where pc and
c are the prediction and ground truth for the concept detection task.
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2.2 DCGB for Graph Reasoning Interpretable Diagnosis

DCGB captures both neighborhood structural and global contextual graph rea-
soning to simulate the way medical experts assess relationships between symp-
toms before making a final diagnosis. Specifically, based on the concept visual
features Cn = [c

(1)
n , c

(2)
n , . . . , c

(k)
n ], we construct a concept relationship graph

G = (A,Cn), where each node corresponds to a specific concept. The adjacency
matrix A ∈ Rk×k defines the connectivity, which is determined by a fully con-
nected layer.

Neighborhood structural learning. To learn the relationships between
concepts in their local neighborhoods, we first compute the similarity matrix
S ∈ Rk×k based on concept features, where the similarity sij ∈ S between
concepts i and j is calculated as the dot product of their respective feature
vectors c(i)n and c

(j)
n . After obtaining the similarity matrix S, we perform element-

wise multiplication with the normalized adjacency matrix D̂−1Â, resulting in Ŝ
where similarity scores for non-connected concept nodes are all zeros. To this end,
each row of Ŝ is averaged to compute the importance of each concept within its
relevant neighborhood concepts. Finally, a softmax function is applied to obtain
the final weights Rn, which reflect the relative importance of each concept based
on its connections to surrounding concepts, as formalized below:

S = CnCn
T ∈ Rk×k, Ŝ = S ◦ (D̂−1Â) ∈ Rk×k, Rn = softmax

(
1

k
Ŝ1

)
∈ Rk,

(1)
where Â = A + I adds self-loops, D̂ is the diagonal degree matrix with D̂ii =∑

j Âij , and ◦ denotes element-wise multiplication.
Global contextual reasoning. While neighborhood structural learning

captures fine-grained relationships within each concept node’s immediate neigh-
borhood, global relational reasoning is essential for understanding the holistic
contextual dependencies among concepts. We assess the significance of each con-
cept node within the context of the entire concept graph as follows:

Ĉn = D̂−1ÂCn ∈ Rk×d, Rg = softmax(Ĉnp) ∈ Rk, (2)

where a learnable vector p ∈ Rd is shared across all concept nodes and opti-
mized jointly with the entire model during training. Typically, the neighboring
region of a concept can be treated as a subgraph, with the concept itself serving
as the center of this subgraph. By aggregating neighbor information for each
concept node, the new features Ĉn represent the information from its subgraph.
A learnable projection vector p, shared across all concept nodes in the concept
graph, is then applied to the contextual-aggregated feature matrix Ĉn, yielding
the global importance weight Rg. Finally, the importance of each concept node
is determined by R = Rn +Rg.

Based on the optimization of CAP, DCGB subsequently computes the con-
cept importance weights. A linear predictor fd is then applied to these concept
importance weights, mapping the concept subspace to disease prediction. The
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linear predictor is highly interpretable, as its decisions are based on clinical con-
cept importance weights, which align with expert reasoning. The weight matrix
of the linear predictor reflects each concept’s contribution to the final decision,
and experts can adjust it for more reliable diagnoses when errors or counterin-
tuitive results arise. Hence, the entire optimization process is as follows:

LASL(pc, c) + LASL(fd(R), y) + LCons(R, pc), (3)

where pc and c are the prediction and ground truth for the concept detection task,
and y denote ground truth for the disease classification task. LCons represents
the mean squared error loss, and LASL is a simplified asymmetric loss.

3 Experiments

3.1 Experimental Setup

Datasets. Derm7pt [9] contains 1,011 dermoscopic images, including 20 dis-
tinct skin disease diagnoses and detailed annotations for 7 clinical concepts de-
rived from the seven-point skin lesion malignancy checklist. We selected 827
images diagnosed as either Nevus or Melanoma. Fitzpatrick 17k [7] comprises
3,230 skin images categorized into Malignant, Benign, or Non-neoplastic classes.
Consistent with previous studies, we selected 22 clinical concepts—each present
in at least 50 images—from the 48 general medical concepts densely annotated
by two dermatologists. BrEaST [20] is an ultrasound breast image dataset an-
notated with seven concepts derived from BI-RADS descriptors. It consists of
256 images across three diagnostic categories: Benign, Malignant, and Normal.
For our study, we used 254 images classified as either Benign or Malignant,
corresponding to abnormal breast conditions.

Implementation Details. We adopt the official PyTorch implementation
for both the backbone and Transformer modules [25]. The model was trained
for 100 epochs using the Adam optimizer [13] with a learning rate of 1 × 10−4,
true weight decay of 1×10−2, and (β1, β2) = (0.9, 0.9999). We adopt the 1-cycle
learning rate schedule [23] and apply exponential moving average to model pa-
rameters with a decay factor of 0.9997. For regularization, we use Cutout [4]
with a factor of 0.5 and true weight decay [16] of 1×10−2. Input images are nor-
malized with mean and standard deviation, and augmented with RandAugment
[3].

Test-time Intervention for Faithfulness. We employ test-time intervention
on concepts to assess faithfulness. During inference time, we first obtain the
concept weights from the DCGB module, then intervene on specific concepts
by adjusting their weights, and observe the resulting changes in the final model
decisions. Fig. 4(a) presents two test-time intervention cases. In the first case, we
increase the predicted weight of the atypical pigment network (APN), resulting
in a corrected diagnosis from melanoma to nevus. In the second case, we set the
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Table 1. Quantitative comparisons of disease diagnosis with state-of-the-art concept-
based methods. The subscript "d" and "c" represent the performance of disease diag-
nosis and concept detection, respectively.

Method
Derm7pt Fitzpatrick 17k BrEaST

Disease Diagnosis Concept Detection Disease Diagnosis Concept Detection Disease Diagnosis Concept Detection
ACCd AUCd ACCc AUCc ACCd AUCd ACCc AUCc ACCd AUCd ACCc AUCc

CBM [14] 82.19 81.92 74.88 71.13 78.05 72.48 81.20 67.68 74.91 75.41 69.33 54.23
CEM [5] 81.56 76.39 79.40 77.29 75.36 75.08 88.69 73.47 74.51 72.20 79.41 63.41

ICK-CBM [19] 84.69 81.08 77.52 68.00 79.50 72.34 87.24 62.81 50.98 60.94 78.99 66.21
evi-CEM [6] 77.81 72.32 78.23 79.06 78.47 73.15 90.40 83.86 72.55 73.85 79.41 74.08

Ours 87.81 88.47 82.55 86.61 79.92 81.20 92.73 86.93 72.75 89.06 81.93 79.52

(a) Derm7pt (b) BrEaST (c) Fitzpatrick17k

Fig. 3. The fine-grained results of the concept detection task on the Derm7pt, BrEaST
and Fitzpatrick17k datasets.

incorrectly predicted concept weight for empty posterior features (EPF) to 0,
which aligns the model’s decision with the dermatologists’ findings. When pos-
itively intervening by adjusting the concept weights for wrong predictions, task
accuracy consistently improved across all datasets in Fig. 4(b) as the proportion
of interventions increased. This suggests that the predicted concepts faithfully
explain the model’s decision-making, which makes our approach highly adapt-
able and editable for real-world medical image diagnosis applications.

Fig. 4. Test-time interventions on concepts to correct model predictions.

Training with Uncertain Concept Labels for Robustness. In derma-
tological diagnosis, we evaluate the model’s robustness for diagnostic tasks using
uncertain training concept labels generated by the dermatosis foundation model
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Table 2. Comparison of the diagnostic task on the Fitzpatrick 17k dataset, trained
with uncertain concept labels for robustness analysis.

Method CBM [14] CEM [5] ICK-CBM [19] evi-CEM [6] Ours
ACCd AUCd ACCd AUCd ACCd AUCd ACCd AUCd ACCd AUCd

Uncertain label 79.50 72.56 77.43 72.48 79.09 72.84 79.71 73.57 79.19 80.85

[11], while retaining the original test data. Our CGP outperforms other methods,
achieving an AUC of 80.85% for the diagnostic task, while competing methods
achieve AUCs ranging from 72.48% to 73.57% in Table 2. Unlike other baseline
models that combine embedded concept features or scalar concept scores linearly
for downstream tasks, our CGP model leverages graph reasoning to capture the
holistic relationships between concepts, ensuring robustness under various con-
cept distortions and ambiguous labels.

Fig. 5. Visual and textual explanations for our model’s understandability across dif-
ferent datasets.

Diagnosis Explanations for Understandability. Understandability is
key in explainable medical AI, ensuring model decisions are transparent and
comprehensible to healthcare professionals. Fig. 5 provides detailed examples of
the explanations. We present local visual and textual explanations regarding the
decision-making process of our CGP model. For visual explanations, we generate
concept activation maps by directly leveraging the attention weights from the
Transformer’s key-query interactions between image tokens (representing spa-
tial regions) and concept tokens (learned embeddings). These weights naturally
show each image region’s contribution to a concept, allowing direct visualization
of concept-specific attention maps without post-hoc gradients. Additionally, we
include textual summaries of the final disease diagnosis results and the confidence
scores for all concepts to establish causal relationships between explanations and
model decisions.
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4 Conclusion

In this paper, we propose a concept-based interpretable model named CGP to
simulate the clinical expert’s decision-making process, consisting of CAP and
DCGB. In CGP, CAP employs human-interpretable concepts to guide the ex-
traction of sub-region visual features. DCGB incorporates dual-scale concept
relationship graph reasoning to guide accurate disease prediction. Extensive ex-
periments demonstrate that CGP offers high interpretability, improved robust-
ness, and superior performance. It provides both visual and textual explanations
to establish causal relationships between explanations and model decisions. Ad-
ditionally, CGP corrects errors through concept interventions in collaboration
with human experts, improving transparency in medical AI for clinical applica-
tions.
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