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Abstract. Whole-body PET/CT imaging provides detailed metabolic
and anatomical information, which is critical for accurate cancer stag-
ing, treatment evaluation, and radiotherapy planning. Automated lesion
captioning for whole-body PET/CT is essential for reducing radiolo-
gists’ workload and assisting personalized treatment decisions. Unlike
previous works that focus on captioning body-part images, we propose a
novel automated lesion captioning framework for whole-body PET/CT
images, which usually have large volume and high anatomical variability.
Our framework first leverages CLIP for lesion localization, upon which
we introduce two location-guided strategies: Confidence-Guided Loca-
tion Prompts (CGLP), which select top-1 or top-3 anatomical location
prompts based on confidence scores to guide captioning, and Dynamic
Window Setting (DWS), which applies appropriate intensity windowing
to enhance visual representation of the localized regions. To our knowl-
edge, our work is the first to achieve whole-body PET/CT lesion caption-
ing. Experimental results on a large dataset comprising 1867 subjects
from Siemens, GE, and United Imaging show that our method not only
yields higher BLEU scores compared to state-of-the-art methods, but
also produces consistent improvements across multiple scanner makers.
This advancement has the potential to streamline radiology reporting
and enhance clinical decision-making using whole-body PET /CT images.
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Fig. 1. Illustration of our automated lesion-captioning approach for whole-body
PET/CT images. The left panel shows a 3D visualization of the full PET/CT scan,
with color-coded boxes indicating suspicious lesions in the chest, abdomen, and pelvis.

The middle panel shows close-up PET/CT views of these lesions, and the right panel
demonstrates the automatically generated captions for each lesion.

o PELVIS:
Nodular abnormal in the right peripheral zone of prostate.

1 Introduction

Whole-body PET/CT imaging provides high-resolution anatomical details from
CT and complementary functional and molecular information from PET, mak-
ing it indispensable for accurate cancer staging, treatment evaluation, and ra-
diotherapy planning [4]. In clinical practice, generating precise lesion captions
from these images is critical, not only for radiology report generation but also
for assisting clinical decision-making, patient monitoring, and treatment plan-
ning [15]. However, manually captioning lesions across large anatomical regions
in whole-body scans is laborious and also prone to inconsistency, underscoring
the need for an automated solution.

Despite significant progress in medical image captioning, most of the exist-
ing works are designed to certain imaging modalities such as chest X-rays [17],
knee X-ray [6], or breast mammography [19]. These studies typically focus on
relatively small anatomical regions. In contrast, automated captioning for whole-
body PET/CT images as shown in Fig. 1 remains unexplored. This gap is mainly
due to two primary challenges. First, whole-body PET/CT images are signifi-
cantly larger than those for certain regions, making it challenging to capture
both global anatomical context and local lesion details simultaneously. For in-
stance, accurately identifying and numbering similar-appearing structures such
as ribs requires a large Field of View (FOV). However, since lesion caption, which
includes both identification and numbering, is needed, detailed lesion informa-
tion is also required, which significantly increases computational load, model
complexity, and resource usage. Second, whole-body CT image can have large
intensity dynamic range and requires contrast adjustment to account for vary-
ing tissue characteristics. The clinicians typically employ different CT window
settings for tissues (such as lung and bone) to enhance the contrast between
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Fig. 2. Overview of our lesion captioning pipeline with two stages. In Stage 1, a CLIP-
based lesion localization is conducted on a downsampled volume with a large Field of
View (FOV) to retrieve the top 5 lesion locations along with their confidence values. In
Stage 2, a lesion captioning process is performed, incorporating Confidence Guided Lo-
cation Prompts (CGLP) for location-aware embeddings and Dynamic Window Setting
(DWS) for adaptive intensity normalization to address the lack of global context in
local lesion patches and enhance lesion-to-background contrast across different regions.

lesion and normal regions. An automated model that can deal with the above
challenges will be highly valuable in clinical practice.

To address these challenges, we propose two strategies: 1) Confidence Guided
Location Prompts (CGLP) and 2) Dynamic Window Setting (DWS). To the best
of our knowledge, our work is the first to tackle automated lesion captioning
for whole-body PET/CT images. Specifically, a CLIP-based lesion localization
module is proposed which retrieves the top 5 potential locations along with
their confidence values on the downsampled lesion volumes with large Field of
View (FOV). Then, the proposed CGLP generates prompt embeddings using the
potential locations and their confidence values. Meanwhile, the DWS module
performs intensity normalization with the proper window setting on the CT
images. These strategies enable more accurate lesion localization using global
context and provide more efficient feature extraction by automatic intensity
adaptation, hence enhancing the performance of lesion captioning. Extensive
experiments on 5,159 lesions from multi-vendor including Siemens, GE, and
United Imaging demonstrate that our approach outperforms the state-of-the-
art methods by 1.2% in BLEU-4 (p<0.05, paired t-test), 1.9% in localization
accuracy and 1.8% in CT finding.
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2 Method

Our lesion captioning pipeline, as shown in Fig. 2, comprises two stages. The first
stage localizes the top 5 lesion regions based on CLIP from a relative large FOV.
The second stage performs lesion captioning based on the proposed Dynamic
Window Setting (DWS) and Confidence Guided Location Prompts (CGLP)
modules on the smaller FOV of the localized lesions. Specifically, in the first
stage, the input 3D patch is aligned with 130 potential categories by CLIP, where
the categories with the top 5 highest confidence are selected. In the second stage,
these top 5 categories with their confidence values are further processed by the
CGLP and DWS modules in an encoder—decoder lesion captioning model, where
a 3D CNN-based encoder extracts volumetric features from the lesion regions
and a Transformer-based decoder produces concise lesion captions. More detailed
descriptions are given below.

2.1 CLIP-based Module

In our approach, the CLIP-based module [14] is employed to align the volume
patch with the corresponding anatomical regions (e.g., "right lung" or "hilum").
This alignment enables the retrieval of high-confidence prompts describing the
lesion locations. Specifically, for a batch of N paired samples, we use {v;}¥,
to denote the image embeddings and {t;}}, to denote the corresponding text
embeddings, where v;,t; € R? and d is the embedding dimension.

The similarity between an image embedding v; and a text embedding t; is
calculated using cosine similarity:

_ Vit
Ivalllits 1
To train the CLIP module, we adopt a symmetric contrastive loss to encourage

matching of image—text pairs and penalize non-matching pairs. The loss function
is defined as follows:

(1)

sim(v;, t;)

1
Lovp = 3 (L1 + L), (2)
where the image-to-text loss £; and the text-to-image loss L are given by
1 N exp (Sim(Zi:ti))

L= —— 1 7 )
I N;()gzy_lexp(m(vm> (3)

N sim(t;,v;)

1 exp (St )

Lr=—— log — .
N 2 (e

Here, 7 is a temperature hyperparameter used to control the smoothness of
the probability distribution, and exp(-) denotes the exponential function. The
learned CLIP-based representations form the support for our proposed CGLP
and DWS in Stage 2.

(4)
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2.2 Confidence Guided Location Prompts

Lesion captioning requires identifying both the lesion’s location and its radio-
logical features. It becomes especially challenging when the lesions are close to
similar skeletal structures like vertebrae and ribs. For example, accurately cap-
tioning lesions near vertebrae demands the exact vertebral number, which relies
on a broader anatomical view. However, although involving broader view can
improve accuracy, it also increases computational costs.

To address this issue, our Confidence Guided Location Prompts (CGLP)
module retrieves the top 5 anatomical locations with their corresponding confi-
dence scores for each patch as shown in Fig. 2. Based on these confidence scores,
we apply a thresholding strategy: if the highest confidence exceeds 95%, only
the top 1 location is embedded; otherwise, the top 1 to top 3 location(s) are
embedded. To handle varying input lengths, we use a special <pad> token for
padding. The tokenized and word-embedded location information is then con-
catenated with the image feature, enriching it with location context and leading
to more accurate lesion descriptions.

2.3 Dynamic Window Setting

CT window setting plays a crucial role in clinical practice, as different anatom-
ical regions require distinct window parameters for better visual contrast. For
example, lung regions are best visualized using a lung window with a window
level of -600 and a window width of 1500, while bone structures are typically
observed using a bone window (level: 800, width: 2600). For soft tissues, a soft
tissue window (level: 40, width: 350) provides optimal contrast. These tailored
settings enhance the visibility of specific anatomical features and improve di-
agnostic accuracy. Our DWS module adjusts the window settings based on the
region of localized lesion in Stage 1. Specifically, when the retrieved location
achieves a confidence score of 0.95 or higher, the window setting of this retrieved
region is applied to the volume patch. If the confidence score falls below 0.95,
the window setting of soft tissues is used. This dynamic contrast adjustment can
ease the decoder and thereby thus facilitate more precise lesion description.

3 Experiments and Results

3.1 Dataset

Our dataset comprises 1,867 whole-body PET /CT scans acquired from scanners
by Siemens (301), GE (290), and United Imaging (1,276), using two radiotracers:
18F-FDG [13] (1,292 cases) and 18F-PSMA [5] (575 cases). The dataset includes
patients with lymphoma, nasopharyngeal carcinoma, lung cancer, prostate can-
cer, and liver cancer. To prevent data leakage, data are split by unique patient
ID into 1,647 training cases (46,434 lesions), 100 validation cases (4,482 le-
sions), and 120 test cases (5,159 lesions). PET and CT images are normalized
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Table 1. Evaluation results of our proposed model and other existing state-of-the-
art models (Percentage, except CIDEr). Statistical significance test performed, with *
indicating significant improvement compared to the second-best method.

Method BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr SPICE
LSTM [7] 73.8 70.1 81.7 85.0 7.31 85.4
SCST [16] 77.0 73.3 83.9 86.7 7.60 87.1
AoANet [8] 77.3 73.4 84.5 87.2 7.62 87.6
LSTM-A [20] 77.6 74.1 84.5 87.3 7.67 87.7
Transformer [12] 78.1 74.6 84.5 87.2 771  87.6
X-LAN [10] 78.4 74.8 84.8 87.4 7.76  87.7
UpDown [2] 78.6 75.1 85.0 87.7 7.76 88.1
X-Transformer [10]  78.9 75.7 84.9 87.5 7.80 87.9
Ours 80.1" 76.9* 85.8" 88.3" 7.92% 88.7*

to [0,1], and standard augmentations (e.g., random rotation and scaling) are
applied during training.

Lesions are segmented using an nn-UNet, followed by radiologists’ review to
remove false positives and ensure accurate image-text alignment. When multiple
lesion types occur in the same region, each type is processed separately during
training, with one lesion mask and its corresponding description per sample. The
training text descriptions are derived from structured reports, which were auto-
matically extracted from original radiology reports using a large language model
(LLM), and subsequently refined by radiologists to ensure clinical accuracy and
consistency with the image content.

3.2 Training Details

Training is conducted on an Nvidia L40 GPU with 48 GB memory. First, the
CLIP module is trained for 300 epochs using a batch size of 48. Once it converges,
its weights are frozen and the lesion caption model is trained for 300 epochs with
a batch size of 64. The initial learning rate is set as 1 x 10™%, and it is reduced by
a factor of 10 every 100 epochs. The Adam is used as optimizer with §; = 0.9,
Ba = 0.999, and a weight decay of 5 x 1074,

3.3 Comparison with State-of-the-Art Methods

In our comparison study, we select several image captioning models whose image
encoders are based on CNN architectures. The comparison includes both tradi-
tional CNN-LSTM models [7] and CNN-Transformer models [12]. Specifically,
the compared methods are SCST (using LSTM) [16], LSTM-A [20], UpDown
[2], AoANet [8], X-LAN [10], and X-Transformer [10]. To quantitatively evaluate
the performance, we employ multiple metrics including BLEU [11], METEOR
[3], ROUGE-L [9], CIDEr [18|, and SPICE [1]. All the scores, except CIDEr,
which remains as a raw score, are reported in percentage (e.g., 80.1% represents
a score of 0.801). In Table 1, the star (*) marks indicate statistically significant



Automated Lesion Captioning in Whole-body PET/CT 7

Outputs

XLAN: No obvious abnormality is observed in the left neck muscles.
UpDown: A lymph node is noted in the subcutaneous tissue of the left neck.
X-Transformer: A lymph node is noted in the left neck (level 1ib) region.
Ours: A lymph node is noted in the left neck (level Va) region.
Ground_truth: A lymph node is noted in the left neck (level Va) region.

XLAN: Decreased bone density in the sacrum.

UpDown: Decreased bone density in the sacrum.
X-Transformer: Decreased bone density in the right iliac bone.
Ours: Osteolytic changes in the right iliac bone.
Ground_truth: Osteolytic changes in the right iliac bone.

XLAN: Pulmonary nodule in the posterior apical segment of the left upper lobe.

UpDown: No obvious abnormality in the bone, in the posterior rib of the left upper segment.
X-Transformer: Pulmonary nodule in the posterior apical segment of the left upper lobe.
Ours: Fat density shadow next to T2 of the thoracic spine.

Ground Truth: Fat density shadow in the left intercostal muscle.

XLAN: No obvious abnormality is noted in the dorsal (posterior) basal segment of the left lower lobe.
UpDown: Pleural thickening is noted in the left intercostal muscle.

X-Transformer: A pulmonary nodule is noted in the posterior basal segment of the left lower lobe.
Ours: Pleural thickening is observed in the posterior basal segment of the left lower lobe.
Ground_truth: Pleural thickening is noted in the posterior basal segment of the left lower lobe.

Fig. 3. Demonstration of different captioning models (Ours, XLAN, UpDown, and X-
Transformer) on four representative PET/CT images. The red dotted curves in each
image highlight the lesion locations, and the texts on the right show the generated
descriptions by the models.

improvements of our method over the second-best performing method. A paired
t-test is performed, and the p-values are all well below 0.05, confirming that our
method’s improvements are statistically significant across all metrics.

We summarize the performance of all the models in Table 1. We can see
that the main network structures are based on LSTM and Transformer. The
LSTM-based models provide robust performance. The Transformer-based mod-
els that utilize attention mechanisms consistently outperform the LSTM coun-
terparts. Besides, we can see that X-Transformer achieves the second highest
scores, indicating that the architecture of X-Transformer (X-Linear attention)
significantly improves the model’s ability to generate coherent and semantically
rich descriptions. Our model benefits from the same model architecture as the
X-Transformer, and achieves the best performance in all the evaluation metrics,
i.e., in terms of BLEU, METEOR, ROUGE-L, CIDEr, and SPICE, providing the
most accurate and fluent lesion descriptions among all the investigated methods.

In Fig. 3, we compare our method with three captioning models (XLAN, Up-
Down, and X-Transformer) using four representative PET/CT slices (left) and
their generated texts (right). In the first example, our model accurately localizes
the lesion in the left neck region ("level Va") thanks to the proposed CGLP
module, whereas the other models misidentify the location. In the second ex-
ample, our DWS module enhances subtle details, enabling correct identification
of osteolytic changes rather than decreased bone density. In the third example,
even though our location description slightly differs from the ground truth, it
still refers to the same anatomical area. Finally, for a lesion in the left lower
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Table 2. Ablation study results in percentage. To highlight clinically significant dif-
ferences, we include two accuracy measures alongside traditional captioning metrics
(BLEU-1 to BLEU-4).

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 Localization CT finding

B 86.3 82.3 78.9 75.7 81.0 65.5
B+W 86.5 82.6 79.3 76.0 81.2 67.3
B+P 86.8 83.0 79.7 76.5 82.2 66.2
B+W+P 87.1 83.3 80.1 76.9 82.9 67.3

lobe, our method correctly identifies both the pathology and its location, while
other models only partially work. These results demonstrate the robustness of
our model in both lesion localization and radiological description.

3.4 Ablation Studies

In the ablation study, we evaluate the impact of each component in our model.
The baseline (B) is the standard X-Transformer, and P denotes the use of CGLP
and W denotes the use of DWS. We report traditional captioning metrics (BLEU-
1 to BLEU-4 in percentage) along with two accuracy measures that compute
how well the model extracts location- and CT-finding-related words from the
generated descriptions using word matching.

Table 2 shows that, compared to the baseline model (B), adding CGLP
(B+P) slightly improves BLEU scores and notably boosts location accuracy,
indicating that the prompt aids the model in better understanding lesion lo-
cations. Similarly, incorporating DWS (B-+W) enhances BLEU scores and CT
finding accuracy. Notably, the combined configuration (B+W+P) achieves the
best performance across all the metrics, verifying the effectiveness of these two
strategies to produce more accurate and context-rich captions.

Overall, the ablation study confirms that both CGLP and DWS improve
the X-Transformer model, enhancing general caption quality and the targeted
accuracy for location and CT finding. This evidence supports our final approach,
which, built on the robust X-Transformer architecture with both CGLP and
DWS, offers superior performance in generating precise and informative lesion
captions.

4 Conclusion

In this paper, we present the first framework for automated lesion captioning
in whole-body PET/CT images. Our method introduces two novel strategies:
1) Confidence Guided Location Prompts (CGLP), which generate coarse but
informative lesion location based on confidence scores from CLIP, and 2) the
Dynamic Window Setting (DWS), which dynamically adjusts CT window pa-
rameters for optimal lesion visibility. Experiments on a large dataset of 1,867
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subjects demonstrate that our model outperforms the existing methods signifi-
cantly in multiple metrics including BLEU, METEOR, ROUGE-L, CIDEr, and
SPICE. Additionally, we evaluated accuracy metrics showing clinically signifi-
cant differences, further confirming the advancements of our proposed model.
This work marks a significant step toward automated radiological reporting for
whole-body PET/CT, and can largely reduce radiologists’ workload, standardize
lesion annotation, and enhance clinical decision-making.
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