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Abstract. Deep learning (DL), a pivotal technology in artificial intel-
ligence, has recently gained substantial traction in the domain of den-
tal auxiliary diagnosis. However, its application has predominantly been
confined to imaging modalities such as panoramic radiographs and Cone
Beam Computed Tomography, with limited focus on auxiliary analysis
specifically targeting Periapical Radiographs (PR). PR are the most ex-
tensively utilized imaging modality in endodontics and periodontics due
to their capability to capture detailed local lesions at a low cost. Nev-
ertheless, challenges such as projection angle and artifacts complicate
the annotation and recognition of PR, leading to a scarcity of publicly
available, large-scale, high-quality PR analysis datasets. This scarcity
has somewhat impeded the advancement of DL applications in PR anal-
ysis. In this paper, we present PRAD-10K, a dataset for PR analysis.
PRAD-10K comprises 10,000 clinical periapical radiograph images, with
pixel-level annotations provided by professional endodontists for nine
distinct anatomical structures, lesions, and artificial restorations or med-
ical devices. We also include classification labels for images with typical
conditions or lesions. Furthermore, we introduce a DL network named
PRNet to establish benchmarks for PR segmentation tasks. Experimen-
tal results demonstrate that PRNet surpasses previous state-of-the-art
medical image segmentation models on the PRAD-10K dataset. The code
and dataset will be released at https://github.com/nkicsl/PRAD.

Keywords: Periapical radiographs · Dental dataset · Medical image seg-
mentation

1 Introduction

Radiological imaging is vital in dentistry for diagnosis, treatment planning,
and outcome evaluation [15]. As shown in Fig. 1, the main modalities include
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Fig. 1. Examples of three dental radiographic imaging modalities. (a) PAN, (b) CBCT
and (c) PR.

Panoramic Radiography (PAN), Cone Beam Computed Tomography (CBCT),
and Periapical Radiographys (PR). PAN offers a broad dental arch view but
lacks detail for individual teeth [26]. CBCT provides high-resolution 3D images
but is less common in routine endodontics due to cost and radiation [23,26]. As
a common imaging modality in endodontics [22], PR mitigate these challenges
by providing high-resolution intraoral images of one or two teeth, aiding in the
diagnosis of apical periodontitis and root canal treatment planning [24]. While
PR offer detailed views of local structures, its limited field of view and sensitiv-
ity to angulation and anatomical overlap lead to interpretative difficulties and
inter-observer variability. Thus, applying Deep Learning (DL) to PR analysis has
the potential to enhance treatment outcomes, reduce subjectivity, and support
computer-aided diagnosis and treatment in endodontics.

Recently, there has been a surge of research and applications of DL in the field
of dentistry. For instance, Wang et al. [30] introduced a deep multi-task learning
framework designed to segment teeth and root canals in dental CBCT images.
Jang et al. [13] developed a fully automated system for integrating intraoral scans
(IOS) with CBCT through individual tooth segmentation and identification.
Wang et al. [28] employ weakly supervised tooth instance segmentation with
multi-label learning, facilitating accurate segmentation of teeth in dental 3D
models. Regarding PR image analysis, several studies have applied DL methods.
For example, previous works have employed UNet [21] based DL approaches to
analyze PR images [2,9,14], enabling effective feature extraction and improving
the accuracy of identifying anatomical structures and lesions. Chen et al. [6] and
Ozsari et al. [17] applied DL techniques for the early diagnosis of periodontal
bone loss and the detection of vertical root fractures. However, most of these
studies were conducted using small, private datasets, and publicly available,
high-quality benchmark datasets for PR image analysis remain scarce.

In this paper, to address the above issues, we introduce PRAD-10K, a large-
scale PR dataset featuring expert annotations and serving as a potential bench-
mark for research in DL-based PR image analysis. Additionally, to tackle the
multi-scale challenges inherent in PR image segmentation tasks, we present PR-
Net, a DL network that integrates the Multi-scale Wavelet Convolution Network
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Table 1. Comparison between PRAD-10K and some publicly available 2D dental
datasets, OR and IR stands for Occlusal and Intraoral Radiograph, respectively.

Dataset Modality Year Size Task
PDSM [1] PAN 2020 116 Mandibles segmentation
TDD [18] PAN 2021 1000 Tooth segmentation
PRD [20] PAN 2021 598 Tooth segmentation
OCI [3] RGB Photo 2022 131 Oral cancer classification

DC1000 [29] PAN & OR 2023 597+2389 Caries segmentation
Thalji et
al. [25] PR 2023 929 Classification

IO150K [33] IR 2024 1,500,000 Tooth segmentation
PRAD-10K

(Ours) PR 2025 10,000 Multi-structure segmentation
Disease classification

(MWCN) and the Channel Fusion Attention (CFA) mechanism. Extensive ex-
periments demonstrated that PRNet surpasses previous state-of-the-art (SOTA)
medical image segmentation networks on the PRAD-10K dataset. Ablation ex-
periments also confirmed the effectiveness of each component of PRNet.

2 PRAD-10K

2.1 Overview

As shown in Table 1, PRAD-10K is compared with existing 2D dental datasets.
The introduction of PRAD-10K provides a benchmark for DL-based PR image
analysis. Fig. 2 presents four PRAD-10K images with expert pixel-level annota-
tions covering all annotated categories, alongside a detailed label index. PRAD-
10K includes nine pixel-level annotation types for anatomical structures, lesions,
restorative materials and medical devices. Additionally, classification labels are
provided for images with periodontitis, apical periodontitis, or inadequate root
canal fillings.

2.2 Collection and Annotation

The PRAD-10K dataset is sourced from real clinical data from the Department
of Endodontics of The First Affiliated Hospital of Nankai University, ensur-
ing that no personally identifiable information was included, and the data were
used exclusively for research purposes. The study was approved by the hospi-
tal ethics committee (approval number 2025-B114). A radiology expert selected
10,000 high-quality PR images based on criteria such as clear tooth visibility, no
severe artifacts, and excluding master cone or working length radiographs. Im-
ages featuring rich structures such as implants, orthodontic appliances, or dental
restorations were also intentionally included to enhance dataset diversity.
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Fig. 2. Examples from the PRAD-10K dataset (top left) along with their corresponding
pixel-level annotations (bottom left). The right side displays the label distribution.

The data annotation was conducted by two endodontists with over eight years
of experience and one computer science researcher. The dataset was divided
between the two endodontists, who were trained by the researcher in the use
of the annotation software. The researcher also compiled annotations, compiled
the annotations, evaluated label usability, and verified the accuracy of the label
index. After initial labeling, the endodontists reviewed and corrected each other’s
work and assigned classification labels to confirmed lesion images. The researcher
then reviewed all data for proper formatting. Dataset construction took over
eight months. Detailed information on PRAD is available on Github.

3 Method

3.1 Overview

The overall PRNet pipeline, illustrated in Fig. 3, comprises MWCN encoder
blocks and the CFA mechanism for skip connections. Given an input image
X ∈ RH×W×C , a convolutional stem block generates the initial feature map
X0 ∈ RH×W×Cs . The feature map X0 is then passed through four MWCN stages,
producing hierarchical features Fi ∈ R

H

2i−1 × W

2i−1 ×2i·Cs (i ∈ {1, 2, 3, 4}). Each
stage includes Li MWCN blocks and a MaxPooling layer. F4 enters the decoder,
while X0, F1, F2, and F3 are processed by the CFA mechanism to produce
weighted features, which are fused with decoder features via skip connections.
Finally, the decoder output is passed through a segmentation head to generate
the final segmentation mask Y ∈ RH×W×N , where N denotes the number of
classes.

3.2 Multi-scale Wavelet Convolution Network

Inspired by [10], we leverage WTConv’s large receptive field to capture global
features in PR images. To address multi-scale challenges through global-local fea-

https://github.com/nkicsl/PRAD
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Fig. 3. Overall framework of the proposed PRNet. The structure of the decoder blocks
are consistent with UNet.

ture integration, we designed MWCN blocks. As shown in the bottom left blue
area of Fig. 3, given the input Ii ∈ RH×W×C , MWCN applies two convolutional
layers and two WTConv layers with kernel sizes of 3 and 5. WTConv captures
global context, while convolutions extract local details. Outputs from both are
fused using two trainable Global-local Feature Weighting Matrices (GFWM)
α, β ∈ RH×W×1, initialized as all-ones. GFWM enables adaptive weighting of
global and local features. The fused output Iout is then passed through Max-
Pooling and into the next MWCN stage via a feed-forward block, as defined in
Equation 1, where I ′i is the LayerNorm output of I.

I1 = α · (Convk=3(I
′
i)) + β · (WTConvk=3(I

′
i))

I2 = α · (Convk=5(I1)) + β · (WTConvk=5(I1))

Fi = Convk=1(LeakyRelu(Convk=1(I2)))

(1)

3.3 Channel Fusion Attention

As shown in the yellow section at the bottom center of Fig. 3, the main structure
of the CFA is illustrated. The primary function of the CFA is to weight the fea-
tures from a channel perspective by integrating multi-level local features. This
process enhances the decoder’s ability to recognize objects of various sizes by
feeding the feature layer, enriched with multi-scale information, into the corre-
sponding decoder. The inputs fed into the CFA are the X0 and the hierarchical
outputs F1, F2 and F3 from the corresponding MWCN blocks.

Given a hierarchical feature map input Fi ∈ RH×W×C , the first step is to
partition the feature map into patches of size s and 2s, respectively, resulting in
feature maps F s

i ∈ RH
s ×W

s ×s2·C and F 2s
i ∈ RH

2s×
W
2s×4s2·C . In our experiments,

s is set to 2. Subsequently, Fi, F s
i and F 2s

i are each passed through an Average
Pooling layer, which averages the features along the spatial dimensions H and
W . For F s

i and F 2s
i , the channel features after pooling are randomly grouped
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and summed according to s and 2s, integrating local features and reducing di-
mensionality. Then, the three scaled feature maps are concatenated, followed
by channel shuffling and averaging. The resulting feature is passed through a
pointwise convolution layer followed by a sigmoid activation function to produce
the attention map A ∈ R1×1×C , as defined in Equation 2.

A = Sigmoid(Conv1×1(Mean(Channel Shuffle(Concate(F
′

i , F
s′

i , F 2s′

i )))) (2)

Here, F ′
i , F s′

i , and F 2s′

i represent the outputs after grouping and summing the
channel features at the three scales. Then, the attention map A is multiplied
by the original features to perform channel weighting incorporating multi-scale
information, as shown in equation 3, F̂i represents the output of the CFA block.

F̂i = A× Fi (3)

4 Experiments

4.1 Implementation Details

We randomly selected 80% of PRAD-10K images as the training set and used
the rest as the test set. Network parameters were randomly initialized, and the
Adam optimizer with an initial learning rate of 0.0001 and a ‘Poly’ decay strat-
egy was used. The loss combined Cross-Entropy and DICE losses. Input images
were RGB resized to 256×256, trained for 200 epochs with a batch size of 12.
Hierarchical feature channels were [64, 128, 256, 512], and MWCN blocks Li

were [1, 1, 2, 1]. Training was done on NVIDIA GeForce RTX 3090 GPUs using
PyTorch. All experiments were repeated three times under the same settings,
and average results are reported.

4.2 Comparisons with Other Methods

To evaluate the effectiveness of PRNet, we compared it with representative and
recent SOTA medical image segmentation models. As shown in Table 2, PRNet
achieved the best overall performance on PRAD-10K, with an average DSC
of 84.28%. Compared to recent models like ACC-Unet (MICCAI’23), AHGNN
(MICCAI’24), and EMCAD (CVPR’24), PRNet outperformed them by 8.78%,
4%, and 5.85%, respectively. PRNet also achieved top results in distinguishing
dental crowns and implants, and performed best in identifying pulp, orthodontic
devices, and apical periodontitis, demonstrating strong small-target and multi-
scale capability. However, from an overall perspective, while PRNet performs
well on large anatomical structures such as bones and teeth, its performance
is relatively weaker when identifying implants and prosthetic crowns due to
feature similarity. Large restorations that resemble crowns further increase the
risk of misclassification. Addressing these challenges will be a key focus of future
research.
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Table 2. Quantitative comparison results of PRNet and other SOTA medical image
segmentation methods on the PRAD-10K dataset, with DSC as the evaluation metric.
Bold indicates the best performance, and underline indicates the second best.

Model Tooth Bone Pulp RCF DC DF IM OD AP Avg.
Unet [21] 91.55 92.17 85.74 84.82 55.33 75.35 63.69 89.71 84.61 80.33

Unet++ [32] 92.56 93.20 85.52 85.31 57.94 78.07 64.70 90.38 72.47 80.02
Atten-Unet [16] 92.58 93.31 85.61 84.54 69.14 75.19 63.63 89.14 84.25 81.93
MultiResUnet [12] 91.70 92.64 79.07 82.58 45.16 66.97 61.53 76.02 82.01 75.31
TransUnet [7] 91.34 92.05 75.23 87.93 81.50 59.28 61.16 90.19 74.01 79.19
Swin-Unet [4] 89.53 90.43 77.17 69.16 42.35 63.03 56.01 75.67 72.84 70.69
UNEXT [27] 90.41 91.66 74.22 55.71 47.64 64.12 56.89 72.09 76.09 69.87

MGFuseSeg [31] 91.58 92.50 84.89 73.27 48.33 67.96 62.42 70.01 75.54 73.94
ACC-Unet [11] 91.69 92.68 83.34 78.49 41.10 71.68 63.27 79.98 76.92 75.46
EMCAD [19] 91.62 92.40 81.98 80.44 63.26 69.52 62.36 83.48 80.41 78.39
TinyUnet [8] 88.62 89.92 63.47 71.37 40.09 43.69 55.27 68.19 88.64 67.60
AHGNN [5] 92.60 93.45 85.60 82.49 57.31 75.24 63.78 88.49 83.16 80.24

PRNet (ours) 92.38 93.02 88.87 82.89 78.88 78.66 63.92 92.46 88.83 84.24

Table 3. The quantitative results of the ablation experiments, ✓ indicates inclusion
and ◦ indicates exclusion.

CFA MWCN(k=3) MWCN(k=5) GFWM DSC↑

UNet ◦ ◦ ◦ ◦ 80.33
✓ ◦ ◦ ◦ 82.89

UNet Decoder
✓ ✓ ◦ ◦ 83.65
✓ ◦ ✓ ◦ 83.43
✓ ✓ ✓ ◦ 83.81

PRNet ✓ ✓ ✓ ✓ 84.23

4.3 Ablation experiments

We conducted ablation experiments to verify the effectiveness of each PRNet
component, with results shown in Table 3. As seen in the second row, adding
CFA blocks to the vanilla UNet’s skip connections improved segmentation per-
formance, increasing the average DSC by 2.56%. Next, we replaced the vanilla
UNet encoder with our MWCN encoder while keeping the decoder and CFA
blocks unchanged. To assess the two-scale MWCN encoder, we performed three
comparative experiments. In the third and fourth rows, MWCN encoders with
kernel sizes of 3 and 5 both outperformed the vanilla encoder. In the fifth row,
the two-scale MWCN further improved performance over single-scale versions.
Finally, the last row presents results from integrating GFWM into MWCN, form-
ing PRNet. PRNet achieved the highest average DSC, confirming the effective-
ness of GFWM. These results demonstrate that all PRNet components work
synergistically and are indispensable.



8 Z. Zhou et al.

5 Conclusion

This study presents PRAD-10K, the first and largest expert-annotated dataset
for multi-class segmentation and classification of anatomical structures and le-
sions in PR images for endodontics. To establish a benchmark for PRAD-10K,
we propose PRNet, a DL network with MWCN encoders and CFA mechanisms.
Experiments show that PRNet achieves competitive performance on PRAD-10K.
Future work will focus on further expanding and refining the PRAD dataset, as
well as developing more efficient models for fully supervised, semi-supervised, or
multimodal PR analysis.
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