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Abstract. Positron emission tomography (PET) is widely recognized as the most 

sensitive molecular imaging modality, enabling the in vivo visualization of mo-

lecular pathways. Despite its exceptional utility, concerns about ionizing radia-

tion exposure have limited its broader application. A recent breakthrough in total-

body PET imaging addresses this limitation by significantly increasing geometric 

coverage and sensitivity. This innovation reduces radiation exposure to levels 

comparable to the dose received during a transatlantic flight, achieved through 

advanced computational techniques. To accelerate progress in this field, we have 

curated a benchmark dataset specifically designed for developing ultra-low dose 

PET imaging methodologies. This dataset was pivotal in the Ultra-Low Dose 

PET Imaging Challenge held in 2022, 2023, and 2024. The challenge aimed to 

foster innovative computational algorithms capable of recovering high-quality 

imaging from low-dose scans acquired on total-body PET systems. The dataset 

includes both standard-dose and simulated low-dose total-body PET images from 

1,447 patients. These were acquired using Siemens Biograph Vision Quadra 

PET/CT and United Imaging uExplorer PET/CT scanners. In addition, we have 

developed a customized evaluation system to assess the performance of algo-

rithms in recovering image quality from low-dose scans. This paper provides a 

comprehensive description of the benchmark dataset and evaluation framework, 

aimed at driving future advancements in ultra-low dose PET imaging. The dataset 

is available at https://udpet-challenge.github.io, subject to the completion of a 

signed Data Transfer Agreement. 

Keywords: Positron Emission Tomography (PET), Total-body PET, Image 

Quality Recovery, Dose Reduction. 

1 Introduction 

Positron emission tomography (PET) is a critical imaging modality in clinical routine 

procedures of oncology [1], neurology [2], and cardiology [3]. However, the use of PET 

is limited by the potential harm of ionizing radiation dose [4]. Despite following the 
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ALARA concept (as low as reasonably achievable) [5], which aims to minimize expo-

sure, patients still receive a considerable amount of equivalent dose, typically exceed-

ing 4 mSv [6]. PET imaging quality is highly influenced by the activity of the injected 

tracer and the resulting radiation dose, such that a reduction in dose leads to a degrada-

tion of imaging quality. This issue presents a challenge in striking a balance between 

maintaining the imaging quality and minimizing patient exposure. 

PET scanners have undergone significant technical advancements in recent years, 

which has reduced radiation exposure without compromising image quality [7]. These 

advancements have been achieved through improvements in signal measurement and 

imaging generation, including advancements in scintillator crystals, photodetectors, ac-

quisition electronics, and image reconstruction techniques [8]. Total-body PET systems 

for human use have been developed and initial clinical studies have been conducted [9]. 

These systems have significantly increased the geometric coverage to include the entire 

body, resulting in a sensitivity boost of about 40 times for total-body imaging or 4-5 

times for imaging individual organs such as the brain or heart [7]. This increased sen-

sitivity allows for a reduction of radiation exposure by approximately 10 times [10].  

In contrast to technical advancements of hardware, computational methods offer a 

cost-effective alternative solution to improve image quality for PET imaging. Various 

denoising methods, such as nonlocal means [11] or multi-scale curvelet and wavelet 

analysis [12], have been developed to reduce the noise in low-dose PET images. Ma-

chine learning-based data-driven approaches have also been employed to recover image 

quality from low-dose PET imaging. These include random-forest-based regression 

[13], mapping-based sparse representation [14], semi-supervised tripled dictionary 

learning [15], and multilevel canonical correlation analysis framework [16]. Recently, 

deep learning techniques have been developed to better predict textural information in 

molecular imaging, using network architectures such as fully connected convolutional 

neural network (CNN) [17], encoder-decoder CNN (U-Net) [18], and generative adver-

sarial network (GAN) [19]. 

Despite advancements in computational methods for image quality recovery, the 

progress in this field remains less than ideal, primarily due to the dearth of valuable 

datasets. The main bottlenecks of publicly available datasets encompass: 

• Limited total quantity available. 

• Lack of diversity in the datasets. 

• Absence of datasets for cutting-edge total body PET. 

• Absence of standard evaluation system. 

To advance computational methods for recovering high-quality images from low-

dose scans on total-body PET scanners, we carefully curated a benchmark dataset. This 

dataset served as the foundation for the Ultra-Low Dose PET Imaging Challenge 

(UDPET), held in 2022, 2023, and 2024. The challenge aimed to inspire the develop-

ment of cutting-edge techniques for enhancing image quality in low-dose total-body 

PET scans. In this paper, we provide a detailed overview of the benchmark dataset and 

introduce a customized scoring system designed to evaluate the performance of these 

computational methodologies. 
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2 Materials and Methods 

2.1 Dataset Description 

Our benchmark dataset includes 1447 subjects referred to 18F-Fluorodeoxyglucose 

(18F-FDG) total-body PET for various neurological or oncological diseases, acquired 

from Siemens Biograph Vision Quadra (n=433) and United Imaging uExplorer 

(n=1060) PET/CT scanners. Details of patient demographics is shown in Table 1. 

Table 1. Patient demographics from different PET/CT scanners. 

PET/CT Scanner Siemens Biograph Vision Quadra United Imaging uExplorer 

Tracer 18F-FDG 18F-FDG 

Number of patients 387 1060 

Total dose (MBq) 219.2 ± 50.9 185.0 ± 77.3 

Weight (kg) 73.0 ± 16.4 62.9 ± 11.1 

 

 
Fig. 1. Example of a coronal view of 18F-FDG PET imaging acquired from Quadra (Biograph 

Vision Quadra) PET/CT scanner.   
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Quadra data was acquired from the Department of Nuclear medicine, University of 

Bern, Switzerland, and uExplorer data was acquired from the Department of Nuclear 

Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shang-

hai, China. All PET data was acquired in list mode where the scanner recorded every 

detection event individually, including the precise time and position of each detected 

gamma photon pair, which enabled the simulation of different acquisition time win-

dows by rebinding the data. Quadra PET data was reconstructed using OSEM (Ordered 

Subsets-Expectation Maximization) with PSF+TOF, 4 iterations and 5 subsets (4i5s), 

a 2 mm Gaussian filter, and a voxel size of 1.650 × 1.650 × 5.000 mm. In contrast, 

uExplorer PET data was reconstructed using OSEM with 3D iterative TOF PSF, no 

Gaussian filter, and a voxel size of 1.667 × 1.667 × 2.886 mm. Normalization, attenu-

ation, scatter and random correction were performed after the reconstruction, but the 

corresponding CT scans were not provided. Each simulated low-dose PET image, with 

a specific dose reduction factor (DRF), was reconstructed from counts in a time window 

sampled at the midpoint of the acquisition, with the corresponding reduced acquisition 

time, as shown in Fig. 1. Low-dose images were generated for DRFs of 4, 10, 20, 50, 

and 100, along with full-dose images. Since these low-dose PET images are produced 

by subsampling a portion of the full scan, they are perfectly aligned with the full-dose 

PET images. 

 

2.2 Data Management 

All procedures involving human participants in this study were conducted in compli-

ance with the ethical standards of the institutional and/or national research committee, 

as well as the 1964 Helsinki Declaration and its subsequent amendments or equivalent 

ethical guidelines. Informed consent was obtained from all participants included in the 

study. Access to the dataset was provided upon receipt of the duly signed Data Transfer 

Agreement (DTA) by the organizers. The dataset is securely stored using cloud storage 

services: the dataset is hosted on Microsoft OneDrive. This data acquisition process 

adheres rigorously to the ethical guidelines and regulations stipulated by the pertinent 

local ethics committees in Switzerland and China. 

3 Evaluation Metrics 

Evaluation of the generated PET image is complex because clinicians focus more on 

the regions with high uptake values, especially tumors. Here, we proposed a customized 

comprehensive scoring system with both global and local metrics to evaluate computa-

tional methods. The idea behind this system is to inspire the development of new eval-

uation metrics that consider the unique clinical requirements of PET imaging. 

The global metrics include Normalized Root Mean Squared Error (NRMSE), Peak 

Signal-to-Noise Ratio (PSNR), and Structural Similarity Index Measurement (SSIM), 

for overall image quality and fidelity assessment. The NRMSE is computed as  
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NRMSE =

√
∑

(𝑦𝑡𝑟𝑢𝑒−𝑦𝑝𝑟𝑒𝑑)
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𝑛
𝑛
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𝑚𝑎𝑥(𝑦𝑡𝑟𝑢𝑒)−𝑚𝑖𝑛(𝑦𝑡𝑟𝑢𝑒)
         (1) 

 

where 𝑦𝑡𝑟𝑢𝑒 is the full dose PET and 𝑦𝑝𝑟𝑒𝑑 is the predicted PET image, and it measures 

the overall pixel-wise intensity deviation between these two PET images. The PSNR is 

defined as 

PSNR = 10 log10
𝑉𝑅2

‖𝑦𝑡𝑟𝑢𝑒−𝑦𝑝𝑟𝑒𝑑‖2
2         (2) 

where 𝑉 is the total amounts of voxels and 𝑅 represents the range of the intensity of the 

full dose PET image, and ‖𝑦𝑡𝑟𝑢𝑒 − 𝑦𝑝𝑟𝑒𝑑‖2
2
computes the mean squared error between 

it and the predicted PET image. The SSIM is defined as 

SSIM(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦+𝑐1)(2𝜎𝑥𝑦+𝑐2)

(𝜇𝑥
2+𝜇𝑦

2+𝑐1)(𝜎𝑥
2+𝜎𝑦

2+𝑐2)
         (3) 

where𝜇𝑥, 𝜇𝑦are the averages of images full dose PET and predicted PET, 𝜇𝑥
2 and 𝜇𝑦

2 are 

the variances of the two images, σ𝑥𝑦 is the covariance between the two images, and c1 

and c2 are two positive constants to avoid a null denominator. Theoretically, image 

with lower NRMSE, higher PSNR, and SSIM closer to 1 represent higher image syn-

thesis quality. 

For the local metrics, spherical volumes of interest (VOIs) can be delineated within 

lesions and target organs, such as livers, kidney, and heart. The mean and maximum of 

standardized uptake value (SUV) of the VOI are extracted and PSNR is computed lo-

cally. Some selected radiomics features are then calculated for that region. Absolute 

percentage error is calculated for these local metrics except PSNR between the gener-

ated PET image and its ground truth. 

Each subject's score was calculated using the sum of weighted scores for each eval-

uation metric that has been normalized within the range between 0 and 1. For the scor-

ing weight, 50% of the total weight was assigned to the global metrics, with 40% allo-

cated to NRMSE, 40% to PSNR, and 20% to SSIM. The remaining 50% was assigned 

to the local metrics, with 60% for SUV parameters, 10% for PSNR, and the final 30% 

evenly distributed across the selected radiomics parameters. A detailed breakdown of 

the evaluation metrics and their corresponding weights can be found in Table 2. 
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Table 2. Global and local quantitative metrics for evaluation of generated PET images 

 Metric Name 
Intra-group 

Weights 
Inter-group Weights 

Global  

NRMSE 30% 

30% PSNR 30% 

SSIM 40% 

Local  

SUVmean 35% 

35% (Targeted organs) + 

35% (Lesions) 

SUVmax 25% 

PSNR 10% 

First order: Root Mean Squared 5% 

First order: 90 Percentile 5% 

First order: Median 5% 

GLRLM: High Gray Level Run 

Emphasis 

5% 

GLSZM: Zone Percentage 5% 

GLCM: Joint Average 5% 

4 Discussion and Conclusion 

One major challenge in developing AI algorithms is the scarcity of high-quality training 

data, as highlighted in several studies [20]. While various efforts have been directed 

toward techniques like fine-tuning [21], and data augmentation [22], it is evident that 

the inclusion of additional data could significantly enhance the accuracy of these mod-

els. In this paper, a first-of-its-kind benchmark dataset was introduced to enhance low-

dose total-body PET image quality recovery algorithms. It aims at addressing the key 

bottleneck of limited datasets in the development of low-dose PET image enhancement 

algorithms.  

The limited diversity in training cases can also hinder the generalizability of AI al-

gorithms. PET imaging, in particular, exhibits significant variability across instrumen-

tation and imaging protocols [23]. These variations include differences in detector ca-

pabilities, data correction methods, and system calibration. Therefore, some concerns 

have been raised regarding the reliability and stability of such AI models when applied 

to external datasets. Our dataset aims to address this issue by incorporating data from 
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the only two commercially available total-body PET systems: the United Imaging 

Healthcare uExplorer and the Siemens Biograph Vision Quadra. By using this dataset, 

developers can better evaluate the generalizability of their algorithms, especially for 

computational methods targeting PET instrumentation. Notably, algorithms developed 

with total-body PET data can potentially be adapted for use with older PET systems, 

paving the way for advancements over the next decade. 

Despite its strengths, the dataset has several limitations. First, the dataset includes 

only PET images with the 18F-FDG tracer, which may limit its usage for developing 

enhancement methods across different radiotracers. Additionally, the absence of ac-

companying CT scans restricts the potential for developing multimodal methods. More-

over, the dataset may be skewed by demographic or clinical biases depending on the 

population from which the scans were acquired, potentially limiting its applicability to 

broader or underrepresented patient groups. These factors should be carefully consid-

ered when interpreting results or generalizing findings from models trained on this da-

taset. 

Currently, there is no standardized system for evaluating the quality of PET images 

generated by AI algorithms. With this work, we aim to spark a discussion about devel-

oping such an evaluation system. Assessing PET image quality differs significantly 

from evaluating natural images, as regions with high uptake values often carry critical 

clinical importance and should receive greater attention. Our intention is to encourage 

further exploration in this area, fostering comparisons among developers and driving 

the optimization of AI methods tailored to the unique challenges of PET imaging. 
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