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Abstract. Accurate 3D models of the human heart require not only
correct outer surfaces but also realistic inner structures, such as the
ventricles, atria, and myocardial layers. Approaches relying on implicit
surfaces, such as signed distance functions (SDFs), are primarily de-
signed for single watertight surfaces, making them ill-suited for multi-
layered anatomical structures. They often produce gaps or overlaps in
shared boundaries. Unsigned distance functions (UDFs) can model non-
watertight geometries but are harder to optimize, while voxel-based meth-
ods are limited in resolution and struggle to produce smooth, anatom-
ically realistic surfaces. We introduce a pairwise-constrained SDF ap-
proach that models the heart as a set of interdependent SDFs, each rep-
resenting a distinct anatomical component. By enforcing proper contact
between adjacent SDFs, we ensure that they form anatomically correct
shared walls, preserving the internal structure of the heart and prevent-
ing overlaps, or unwanted gaps. Our method significantly improves in-
ner structure accuracy over single-SDF, UDF-based, voxel-based, and
segmentation-based reconstructions. We further demonstrate its gener-
alizability by applying it to a vertebrae dataset, preventing unwanted
contact between structures.

Keywords: Implicit Function - 3D Heart Reconstruction - Spine Re-
construction - Topology

1 Introduction

Accurate 3D modeling of the human heart is key to surgical planning, computa-
tional simulations, and disease diagnosis. However, the heart’s multi-chambered
structure, with its ventricles, atria, and myocardial layers, poses a fundamental
challenge: Accurate external reconstruction is not enough. Shared surfaces be-
tween individual components must be preserved, while preventing gaps, overlaps,
and incorrect connections.

Despite recent advances, existing methods still fail to do this. Voxel-based
approaches such as nn-UNet [7I8] are resolution-limited, making smooth surface
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modeling difficult. Classic implicit functions, such as SDFs [16], yield higher-
resolution reconstructions but are best for single watertight surfaces. Newer SDF-
based approaches [I3122] handle composite shapes but focus on overall shape re-
construction rather than delivering anatomical accuracy or meeting anatomical
constraints. Unsigned distance functions (UDFs) [2/I7] can model inner struc-
tures directly, but suffer from unstable optimization, which limits accuracy.

To address these challenges, we propose a novel pairwise-constrained implicit
function approach that enforces proper anatomical contacts. We model the heart
as a set of interdependent SDFs, each corresponding to a distinct anatomical
component. Unlike previous methods that focus only on adjacency[d] or avoid-
ing interpenetration[d], our approach ensures that adjacent components form
contact regions with correct surface areas, accurately reflecting anatomical mea-
surements. This matters because, when analyzing cardiac datasets, it has been
observed that the ratio between the surface area of the contact region and the
total surface area of paired components remain remarkably stable [TIT53].

This yields a previously unused constraint that we leverage to improve re-
construction accuracy. To this end, we introduce a sampling-based verification
strategy, where we randomly sample a large number of points in space to mea-
sure the actual contact ratio between components. By comparing this empirical
ratio to the expected anatomical values from the training set, we iteratively ad-
just the implicit function representation, ensuring that the reconstructed heart
maintains both topological and anatomical correctness.

We validate our method on cardiac MRI datasets, demonstrating that it
significantly improves inner structure accuracy over single-SDF, UDF-based, and
voxel-based approaches. To demonstrate its generalizability, we also apply it
to a vertebrae dataset, where it successfully maintains proper spacing between
adjacent vertebrae - a very different constraint from the heart. This highlights
the promise of pairwise-constrained implicit functions for achieving high-fidelity,
multi-component medical 3D modeling.

2 Related work

Modeling the internal structure of the human heart requires preserving anatomi-
cal relationships between adjacent chambers while ensuring accurate reconstruc-
tion of shared surfaces. Some segmentation-based methods enforce spatial consis-
tency using topology-aware losses [5l6] or multi-category spatial constraints [4],
but their voxelized nature limits resolution and smoothness. Mesh-based ap-
proaches like Voxel2Mesh [21] refine outputs into meshes but struggle with com-
plex anatomical details due to their reliance on simple geometric templates.
Classic implicit functions, such as SDFs [16], yield high-resolution recon-
structions but were only intended for single, watertight surfaces. Multi-SDF
approaches such as MODIF [13], IPM[22], or SOMH [19] extend this to more
complex structures but do not explicitly enforce inter-object constraints needed
for accurate shared surface reconstruction. Our method addresses this limitation
by enforcing anatomical contact regions with precise surface area constraints,
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ensuring structural integrity. UDFs [2] provide an alternative for modeling non-
watertight surfaces but suffer from unstable optimization [IIII7ITI8], making
them unreliable for medical applications. Our experiments show that, when
applied to heart modeling, UDF-based methods often generate incomplete or
missing surfaces, further limiting their usability.

3 Method

Our method ensures that adjacent structures maintain proper contacts of the
correct extent. In heart reconstruction, it preserves the correct amount of the
shared surface area between chambers [I]. These shared surface ratios are re-
markably stable and can be reliably derived from the training set. For example,
the wall between the left ventricle and its myocardium consistently accounts
for 27% of their combined surface area and analysis of 120 training instances
only shows deviations of less than 2% in the most extreme cases. Our approach
enforces these ratios, preventing unnatural gaps or overlaps. Similarly, when
applying our approach to the reconstruction of healthy human spines, where
adjacent vertebrae must maintain a minimum gap of at least 1 mm [I2], we
introduce separation constraints.

Our framework handles both scenarios equally well, even though they involve
very different constraints. For contact ratios, the primary difficulty lies in ensur-
ing that objects interact without penetrating each other, which requires precise
alignment and continuous adjustment of surface boundaries. For minimum dis-
tance constraints, detecting violations necessitates global checks to ensure that
no parts of the objects come too close from each other. Addressing these two
distinct sets of requirements using traditional modeling frameworks can be cum-
bersome and often involves separate, specialized approaches. In contrast, our
approach handles both cases in a consistent, unified manner.

Our method relies on SDFs [16], which have emerged as a powerful model to
learn continuous representations of 3D shapes. They allow detailed reconstruc-
tions of object instances as well as meaningful interpolations between them.
Given an object, a signed distance function outputs the point’s distance to the
closest object surface: f(z,x) = s : x € R s € R, where z is a latent vector
that parameterizes the surface. In the remainder of this section, we first introduce
our approach to enforcing contact ratio constraint in the heart. We then show
how it can be extended to enforcing the minimum distance constraint between
vertebrae.

3.1 Enforcing Correct Shared Surface Areas

Given objects represented by their SDFs and a prior indicating a desired contact
ratio (%) between them, our goal is to refine their 3D shapes in such a way
that they do not intersect and touch each other within a small tolerance of the
desired contact ratio. We do so by randomly sampling points and identifying
ones lying in critical regions and adjusting the distances of all implicit shapes
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to those points to achieve the desired contact ratio. The key questions we need
to address are how do we select these points, how many do we need, and how to
use them to adjust the shapes.

In our experiment, we reconstruct simultaneously five components of the hu-
man heart: The four ventricles and the myocardium of the left-ventricle, with
the contact ratios between all pairs being given. However, for notational sim-
plicity, in the remainder of this section we describe our approach in terms of
only two components with SDFs, f4 and fp, whose network weights are frozen.
We refine the shapes by minimizing the losses defined below with respect to the
corresponding latent vectors, a and b. This generalizes naturally to all five.

Mining Topologically Meaningful Points. To enforce shared surface con-
straints, we introduce loss functions for three key point sets obtained by random
sampling: (1) Acontact — points that should be in contact with both objects, (2)
Alintersecting — points that sit inside both objects, and (3) Ancontact — points that
should not be in contact areas. First, for two explicit surfaces A, B, the contact
ratio between A and B is defined as

PA 5 Area(SAB)

B Area(Sa) + Area(Sp) ’ (1)

where S4p represents the partial surface of object A that is in close proximity,
i.e., contact distance, to object B, and S4 and Sp refer to the entire surfaces of
objects A and B, respectively. For implicit objects, this can be approximated as

b XN (x| < L(fa(bxo)| <O o)
A,B N N ’
>im Wl fala,xi)| <€)+ 355, 1(|f5(b, x:)| <€)
where {x; : i € (1, N)} is a set of N uniformly sampled random points, € is a
small threshold indicating the contact distance, and 1(-) is the indicator function
that returns the value 1 if its statement is true and 0 otherwise.

Our goal is to adjust a and b so that the estimated contact surface P} p
aligns with the expected value P4, p. To achieve this, we modify the numerator
of eq. (2), which represents the contact surface. While the denominator, which
reflects the combined surface areas of the objects, could also be altered, it tends
to remain stable during optimization as the overall object sizes are largely deter-
mined by the initial segmentation inputs. Thus, the expected number of points
in the contact region should be

N N
Ncontact - PA,B X <Z ]]-(|fA(av X2)| < E) + Z ]]-(‘fB(baXz” < 6)) 5 (3)

i=1 =1

where P4 p is the expected proportion of shared surface area between the two
components, which can be easily computed from the training shapes. To enforce
this expected number of contact points, we define three sets of points for opti-
mization. 1) Acontact : The t0op Neontact points with closest summed distance to
both objects. 2) Ancontact : All points that are in close proximity to both f4 and
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fB but are not included in Agontact, and 3) Aintersecting: all points that are within
both objects: Aintersecting = {X | fa(a,x) < 0A fg(b,x) < 0}. These three sets,
which are periodically resampled, allow us to define the following loss functions
whose minimization ensures correct contacts, while preventing overlap.

Contact Ratio Loss. To ensure the correct shared surface, we define

Econtact - Z |fA(a,X)+fB(b,X)| and ‘CDCOMHCE = Z _(fA(a7X)+fB(b7X))' (4)

x€Acontact x€ Ancontact

Minimizing Leontact €ncourages contact points to lie equally between both sur-
faces without overlap, reaching zero when fa(a,x) = —fp(b,x). Minimizing
L contact Prevents excessive contact.

Intersection and data Losses. To prevent intersections and ensure that ob-
jects remain faithful to their segmentation, we define

»Cintersecting = Z |fA(a7 X)l + ‘fB (b7 X)| ’ (5)
xEAintersecting
Acdata: Z |fA(aaX)78X|+ Z |fB(b7X)7Sx|a (6)
xeX 4 xeXp

where X 4 and X p represent 500’000 spatial locations per object and are sam-
pled more aggressively (90%) near the object surfaces.

Optimization. We reconstruct both objects by minimizing
L= Alﬁirltersecting + )\2£contact + )\SEncontact + )\4£data . (7)

To adapt to shape changes, we resample 300K points every 10 iterations to
update topologically meaningful points.

3.2 Enforcing Minimum Distance Constraints

Our method can also ensure a minimum separation between adjacent structures
when direct contact is not anatomically valid, such as between vertebrae in the
spine. To achieve this, we identify points where the sum of distances to both
surfaces falls below a given threshold d, forming the violation set Ayiolation =
{x| fa(a,x) + fp(b,x) < d}. We then define the composite loss

»Cmin—distamce = )\1 Z max(O, d— (fA (a7 X) + fB (b7 X))) + )\QEdata ) (8)

xEAyiolation

whose minimization fits the data while pushing the surfaces apart.
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(a)nnU-net[8] (b)DeepSDF[16] (c)SOMH[19] (d)NVF[IT7] (e)Our

Fig.1: The two rows show results from an in-distribution (ID) and an out-of-
distribution (OOD) heart sample. We show transparent meshes to highlight con-
tact areas. Red indicates penetration, while green denotes proper shared surfaces.

Table 1: 3D Heart Reconstruction. We compare methods based on Chamfer
distance (x10%), area differences (Area), and normal consistency (NC) relative
to the ground-truth meshes.

Method In-Distribution In-House Testing Data

CD Area NC CD Area NC
nnU-Net[8] 1.5 0.89 68.2 5.0 1.7 87.6
SDF [16] 1.6 2.66 98.8 5.0 2.0 96.8
IPM [22] 10.7 4.14 98.7 10.4 4.4 95.2
SOMH [19] 1.9 0.81 99.2 7.2 1.9 96.8
UDF [2] 1.5 0.40 89.0 40.6 1.8 73.4
NVF [17] 1.6 0.49 99.3 4.8 1.7 81.3
Ours 1.5 0.13 99.4 4.1 1.2 95.3

4 Experiments

We validate our method by reconstructing human heart and lumbar spines. We
jointly reconstruct their components while enforcing proper constraints between
them by fitting deep implicit functions [16] to segmentation outputs from nnU-
Net [7]. We compare against several baselines: (1) a standard SDF method [16]
that fits each part individually, (2) a multi-SDF method based on template
deformation [22], (3) a multi-SDF approach that employs a single perceptron
to implicitly learn part compatibility [19], (4) a simple UDF-based method [2]
for modeling non-watertight shapes, and (5) a recent, state-of-the-art UDF-like
representation for modeling open surfaces [17].

8D Heart Reconstruction. We use our method to reconstruct five heart compo-
nents: left ventricle (LV), myocardium of the left ventricle (M-LV), left atrium
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(LA), right atrium (RA), and right ventricle (RV). We train an SDF auto-
decoder [I6] on a public dataset of 120 whole-heart models [23], setting aside 20
validation samples used for choosing hyper-parameters. Contact ratios between
components are precomputed from the training data and used as constraints
during reconstruction. The nnU-Net segmentation model is trained on 15 car-
diac images from the same dataset, with only 20 images publicly available. We
evaluate our method on two test sets: (1) a public set of five cardiac images
from the same distribution as the training data, and (2) an in-house dataset of
10 cardiac images from a local hospital, serving as an out-of-distribution test
set due to significant differences in image quality. The ground-truth meshes are
produced by applying Marching-Cube[14] and Laplacian smoothing on the an-
notated segmentations, similar to [I0]. We assess reconstruction accuracy using
Chamfer distance (CD), surface area distance (Area), and normal consistency

(NC).

Table 2: Contact Ratio Statistics. Our method can output shapes with similar

contact ratios observed from the training set.
Pairs | LV-MLV | MLV-RV | LV-RA | RV-LA

Training Data 27.0% £ 0.06| 8.6% % 0.03 |5.5% £ 0.01|7.6% £ 0.03
Our output (Val) |27.1% 4+ 0.01| 8.8% + 0.01 |5.4% + 0.03|7.3% =+ 0.01
Our output (Test)|25.5% =+ 0.02|10.0% =+ 0.08]5.0% =+ 0.03|5.6% =+ 0.08

(a) nnU-net (b) SDF[16] (c) Ours (d) Ground-truth

Fig. 2: Verterbrae reconstruction. The second row shows zoomed-in crops of
the first row. Yellow indicates close but allowable proximity, while green marks
undesired contact.

As shown in Tab. |1} our method outperforms existing approaches across both
datasets. For in-distribution data, it achieves the lowest CD (1.5, tied with nnU-
Net and UDF), the lowest area difference (0.13), and the highest NC (99.4%).
Area difference is crucial as it indicates the absence of double or missing surfaces,
and our method performs best in this regard. On in-house data, we maintain the
best CD and area difference while achieving strong NC. Fig. [I] further illustrates
these results. For the OOD sample in the bottom row, nnU-Net struggles with
severe misalignments and fragmented structures, as seen in the second row. In-
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dividually fitting SDFs reduces Chamfer distance by imposing priors on noisy
data but introduces major topological errors. Our method further lowers CD
while preserving structural integrity, outputing shapes with very similar contact
ratios to ones in the training set, as can be seen in Tab. [2} While SOMH[19]
achieves high NC, this is primarily due to overly smoothed outputs, as it fails to
find an embedding that properly fits the noisy input segmentation. UDF-based
methods [2[T7] do not produce any surface penetration by design, but their re-
constructed meshes exhibit many missing holes due to unstable optimization.

Table 3: Spine reconstruction. Comparison of three methods by constraint
violations (area & point count) and Chamfer distance (CD) across vertebrae
pairs, and overall averages.

L1-L2 L2-L3 L3-L14 L4-L1L5 All

px> N px* N px* N px* N CD (x10?%)

nn-Unet 261.4 123.2 527.2 237.3 644.6 294.3 761.1 358.9 0.4
SDF 315.8 154.2 309.8 166.1 416.4 227.7 503.3 279.4 0.4
Ours 0.0 0.8 0.5 23 05 29 1.2 3.9 0.3

Method

8D Lumbar Spine Segmentation. We also use our method to reconstruct verte-
brae in a dataset containing 460 CT images of the five lower vertebrae of the
human spine (L1-L5) [20]. Of these, 80% are used to train both the nnU-Net and
the latent implicit models, while 10% samples are reserved for testing and 10%
are for validation. In the entire dataset, each pair of adjacent vertebrae exhibits
a minimum gap of 1 pixel, which is the constraint we enforce during reconstruc-
tion. In Tab. [3] we report topological errors measured by the number of contact
vertices (N) and the contact surface areas (px?), along with reconstruction accu-
racy. Our approach yields reconstructions with almost no constraint violations.
Note that enforcing the minimum gap constraint is particularly challenging be-
cause there are only small volumes surrounding each vertebrae joints that are
topologically relevant, as can be seen in the highlighted areas in Fig. [2|

Table 4: Ablation study. Performance of our method when reconstructing a
left-ventricle and its myocardium when removing specific loss components.
Method ‘W/O Linter W/O Lcontact W/O Lnon—contact W/O Ldata‘ AH ‘ GT

Penetration 5% 0% 0% 0% 0% | 0%
Contact 17.2% 13% 29% 26%  [27%|27%
CD (x10%) 3.8 3.7 3.5 332 [3.1]0

Ablation. We gauge the effect of each loss function of Section [3.1] by omitting
each one in turn when reconstructing a left-ventricle / myocardium pair in the
out-of-distribution test set. As can be seen by comparing the “w/0” columns of
Tab. [4] against the one that shows the results when using “all” losses, they all
contribute to the accuracy of the final result.
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5 Conclusion

We have introduced a novel method to enforcing topological consistency con-
straints between multiple 3D objects modeled in terms of implicit surfaces. In
the heart reconstruction scenario, our method maintains a precise contact ratio
while preventing interpenetrations. In the lumbar spine reconstruction case, we
ensure that adjacent vertebrae does not touch each other. This is achieved via
randomized sampling of well chosen object locations. Future work will explore
more complex scenarios, such as enforcing the constraints only at specific lo-
cations and not at others where they do not apply due to various pathologies.
This will be turned into a powerful diagnostic tools to detect the extent of these
pathologies.
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