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Abstract. Accurate diagnosis of microvascular obstruction (MVO) in
acute myocardial infarction (AMI) patients typically relies on Cine Car-
diac Magnetic Resonance Imaging (CMR) (video sequences) and Late
Gadolinium Enhancement (LGE) CMR (images). However, LGE imag-
ing is contraindicated in approximately 20% of AMI patients with chronic
kidney disease, underscoring the need for Cine CMR as a standalone di-
agnostic alternative. Although recent advancements in deep learning have
improved video data processing, current methods fail to adequately cap-
ture complementary temporal motion features. This limits their efficacy
and poses significant challenges for MVO segmentation with Cine CMR,
as MVO regions are defined by dynamic motion rather than clear bound-
aries or contrast on Cine CMR. To address this limitation, we propose
a Spatiotemporal-Sensitive Network that integrates static and motion
encoders to effectively process Cine CMR. Further through a guided de-
coder utilizing the rich spatiotemporal information and an uncertainty-
driven refinement leveraging uncertainty maps and low-level features,
our method enhances segmentation accuracy and refines boundary de-
lineation. Extensive experiments on 621 Cine CMR demonstrate supe-
rior performance over competing methods with a Dice score of 0.56 in
Cine CMR-based MVO identification and highlight its potential to ad-
vance video analysis in clinical settings. The code is available at https:
//github.com/MICCAI25-MV0-Segmentation/miccai25-mvo-seg.

Keywords: Spatiotemporal Analysis - Video Segmentation - Cardiac
Magnetic Resonance Imaging - Diagnostic Radiographs.

1 Introduction

Ischemic heart disease remains one of the leading causes of mortality worldwide,
with microvascular obstruction (MVO) in acute myocardial infarction (AMI)
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(a) Cine CMR (Video Sequences) (b) Predicted MVO Region (c) Annotated MVO Region (d) LGE CMR (Images)
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Fig. 1. Demonstrated diagnostic procedures through Cine CMR and LGE CMR. Al-
assisted models are designed to predict MVO segmentation from Cine CMR, closely
aligning with clinician-annotated regions using LGE CMR.

contributing significantly to global death rates [10]. Accurate identification and
diagnosis of MVO typically depend on Cine Cardiac Magnetic Resonance Imag-
ing (CMR) (video sequences) and Late Gadolinium Enhancement (LGE) CMR
(images) [1]. Cine CMR provides dynamic imaging of the cardiac cycle and of-
ten serves as the first diagnostic step, followed by LGE CMR, which enhances
the accurate visualization of myocardial tissue characteristics [11]. However,
LGE imaging is contraindicated in approximately 20% of AMI patients with
chronic kidney disease due to the risks associated with gadolinium-based con-
trast agents (CAs) [13]. This limitation underscores the need to explore Cine
CMR, a contrast-free imaging technique that captures myocardial motion across
multiple frames, as a standalone diagnostic tool for assessing myocardial dam-
age [24] (Fig. 1).

Recent advancements in video segmentation deep learning methods have
yielded substantial improvements. AFB-URR adopts a feature-matching ap-
proach by encoding object masks from previous frames using an adaptive fea-
ture bank, complemented by a region refinement mechanism [15]. DCFNet tar-
gets video salient object detection by generating dynamic convolution kernels
capable of extracting temporal context features across frames [23]. DPSTT pro-
posed a dynamic parallel spatiotemporal Transformer with an efficient dynamic
memory selection [14]. PNS+ processes the initial anchor frame and subsequent
frames within a sliding window using separate encoders, followed by normalized
self-attention over the embeddings [9]. FLA-Net addresses video segmentation
through a frequency-based feature aggregation module to capture temporal re-
lations across spatial features [16]. Vivim leverages a spatiotemporal Mamba [5]
encoder to construct a medical video segmentation model [21].

Despite the remarkable performance of these state-of-the-art (SOTA) tech-
niques, they predominantly rely on clear spatial image features. This reliance is
inadequate for segmenting MVO regions in Cine CMR, where the segmentation
targets lack distinct regions of contrast or clear boundaries. Unlike LGE CMR,
Cine CMR provides motion features that are critical for capturing dynamic phe-
nomena such as MVO. This underscores a significant gap in existing approaches
and highlights the need for methods that effectively incorporate temporal mo-
tion features for accurate segmentation of such regions. While Cine CMR has
demonstrated significant advancements in identifying certain myocardial lesions,
its potential for detecting MVO remains largely untapped [4,17].
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To this end, we introduce a novel framework incorporating both static and
motion encoders to achieve non-contrast MVO segmentation on Cine CMR. The
static encoder captures structural details of the myocardium by focusing on lo-
cal features, while the motion encoder extracts complementary motion dynamics
by analyzing changes between consecutive frames. These spatial and temporal
features are seamlessly fused within a guided decoder, enabling the model to
effectively leverage the rich spatiotemporal information inherent in Cine CMR.
Building on prior research that utilizes uncertainty maps for fine-grained segmen-
tation [8,12,15,20], an uncertainty-driven refinement is also adopted for further
optimization on the boundary regions. This framework addresses existing chal-
lenges by dynamically integrating the complex relationships between spatial and
temporal information, thereby advancing the comprehensive understanding of
medical video data. Our contributions can be summarized as follows:

1. We propose an innovative framework designed to learn fused representations
of spatiotemporal information videos through a guided decoder that effec-
tively segments static and motion-related features.

2. We incorporate a local refinement mechanism leveraging uncertainty maps
and low-level feature maps to enhance segmentation accuracy.

3. We perform a series of experiments to showcase the performance enhance-
ments over SOTA methods. We highlight the framework’s adaptability to
practical scenarios involving varying numbers of frames in video inputs.

2 Methods

2.1 Problem Formulation

Our proposed method illustrated in Fig. 2 adopts a CA-free approach to identi-
fying MVO regions in Cine CMR of AMI patients, and to widen the approach
to patients who may have contraindications for LGE CMR procedures but may
be able to undergo Cine CMR procedures. We consider a video sequence of
Cine CMR X € RHXWXD and its corresponding segmentation mask on MVO
Y € REXWXK acquired from paired LGE CMR image, where H, W, D, K
are the height, width, number of frames, and number of classes, respectively.
We also compute the residual sequence from this video sequence denoted as X
where X; = X; — X(it1)- The last residual frame takes the difference from the
last and first video frames to embed the cyclic relation of the Cine CMR.

2.2 Static and Motion Feature Extraction

For the static encoder on video frames, we employ a ResNet50 [7] backbone
to compute various spatial feature maps F{U} € RH/2'xW/2'xDx2""C jp lyding
scenes and objects depicted in the video from input frames X, where [ is the
layer index and C is the number of channels in the first feature map. For the
motion encoder on residual frames, we also employ a ResNet50 [7] backbone to
compute various temporal feature maps F{} for strengthening the movement of
the objects from residual frames X such that F{!} is of the same shape as F{}.
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Fig. 2. The workflow of proposed Spatiotemporal-Sensitive Network. The static en-
coder captures the intricate structural details by emphasizing local features and the
motion encoder extracts dynamic motion patterns by analyzing changes between con-
secutive frames. These features are harmoniously integrated within a guided decoder
to effectively harness the rich spatiotemporal information embedded in Cine CMR.
Additionally, uncertainty estimation is employed to refine the segmentation along the
boundary regions, ensuring improved precision and reliability.

2.3 Guided Decoder for Spatiotemporal Analysis

Unlike the conventional two-stream architectures which process spatiotemporal
information through late fusion [3,19,22], we propose a novel guided decoder to
refine feature extraction along the temporal dimension of video frames while op-
timizing these features using motion information derived from residual frames.
The continuous movements of the target object within a confined spatial re-
gion are effectively enhanced, with minimized interference caused by redundant
temporal features. To achieve this, we first convolve the embedding F' from the
static encoder over its temporal dimension to produce a spatiotemporal embed-
ding P10 € RH/2'XxW/2'x2"71C where [ s the layer index. Further, we compute
cross-attention between the spatiotemporal embeddings F and each residual em-
bedding F; to produce a final embedding Z{!} € RH/2'xW/2'x2"7"C,

D
21 = 3" GuidedAttentionBlock (F11, £, £ (1)

=1

where F is the query tensor, and F is both the key and value tensors. Lastly,
we fuse spatiotemporal £ and cross-attention embeddings Z by adding them to
compute the final embeddings Z for leveraging complementary information from
both encoders:

Z=F+Z (2)

These final embeddings are propagated up through the deconvolutional layers
of the decoder to produce an initial segmentation mask M € RH*XWxK,
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2.4 Uncertainty-Driven Refinement

We further incorporate a confidence loss to quantify the ambiguity in segmen-
tation results and a refinement module to tackle these ambiguous regions. This
design is particularly suited to the characteristics of Cine CMR, where the lack of
distinct contrast regions and well-defined boundaries presents unique challenges.
From the initial segmentation mask M, we generate a coarse uncertainty map
U given the largest two likelihood values M?* and M? for every pixel:

U = exp <1 — %2> (3)

where %—1 € [1,400) and U € (0,1]. Next, we take the weighted average of the

2

local spatiotemporal feature F{1} from the first layer of the guided decoder that
contains both spatiotemporal and cross-attention information to compute the
reference feature R; with the use of AvgPool and MaxPool operations:

~ AvgPool (M;F 1)) A
‘" AvgPool (M;) )

Embeddings are then obtained from a residual network module f; which learns
to predict local similarity, computing a local refinement mask E by comparing
the similarity between F'{} and R;:

E; = MaxPool (M,) f; (F{l}, Ri) (5)

We compute the final segmentation mask Y by adding the local refinement mask
FE weighted by the uncertainty estimate U of the initial segmentation mask M
and take the softmax of the output over the class dimension.

Y (p) = softmax (M (p) + U(p)E(p)) (6)

2.5 Loss Function

To facilitate the training of the model, we employ a loss function that combines

Dice loss Lgice and a confidence loss Ly, (U) = ||U]2 computed from U—an
uncertainty map taken from the final segmentation mask Y (see Eq. 3):

Loverall = aLdice(K Y) + (1 - a)Lu(UAv) (7)

where Y denotes the predicted logits for MVO presence and Y indicates the
ground truth mask. Empirical tests revealed that setting o = 0.95 yielded the
best performance. During the inference phase, the model is provided with regu-
lar and residual frames X’ and X’ from their respective datasets to produce a
segmentation mask Y”, which will be used to evaluate the model’s performance.
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3 Experiments

3.1 Datasets

Short-axis Cine and LGE CMR data were acquired using a 3T Siemens scanner,
resulting in a dataset comprising 621 paired scans from 125 cases. All images
encompassed the entire left ventricle. Each scan included a 30-frame sequence
of Cine CMR capturing the full cardiac cycle and a corresponding image of
LGE CMR obtained during the diastolic phase. This study was approved by
SingHealth Centralised Institutional Review Board. Expert manual annotation
was conducted where both the endocardium and epicardium were delineated
after rigid registration of the Cine CMR and LGE CMR. Annotations were
performed by a specialist with over 10 years of experience. MVOs were manually
segmented from the myocardium on the LGE CMR, serving as the raw masks.
Data partitioning follows a subject-wise stratification strategy, ensuring scans
from the same subject are never included in both training and test sets.

3.2 Experiment Settings

Based on the filenames of the subjects in the original dataset, we divided the
data into training, validation, and testing sets in a uniform ratio of 70%, 10%,
and 20%, respectively. This resulted in a total of 443/63/115 scans distributed
across the three sets. All images were cropped to a size of 224x224, and data
augmentation was performed using random Flip /Rotation/Transform to enhance
the variability of the dataset. We selected 10 evenly spaced frames from Cine
CMR to serve as the primary focus of our analysis. For model training and infer-
ence, we utilized PyTorch Lightning as the deep learning framework. We adopt
a U-Net [18] architecture with a modified ResNet-50 [7] backbone encoder. All
experiments were conducted on a single NVIDIA A5000 GPU (24 GB of VRAM)
with a training time of 3 hours. Key hyperparameters included the Adam op-
timizer, an initial learning rate of le-4, beta values set to [0.5, 0.99], a weight
decay of 3e-4, and a cosine annealing scheduler for learning rate adjustment. The
batch size was fixed at 8, and each experiment was run for 3200 iterations. The
performance in the segmentation task was evaluated using several metrics: Dice
coefficient, Jaccard index, Hausdorff Distance, pixel-based precision, and recall.
Statistical significance was evaluated using Wilcoxon Signed-Rank Test.

3.3 Comparison Study

We evaluated the performance of our proposed method by comparing it with 7
SOTA methods, encompassing both image-based and video-based approaches.
The image-based methods included UNet [18]|, UNet++ [25], TransUNet [2] and
SwinUnetR [6], while the video-based methods comprised AFB-URR [15], DP-
STT [14], PNS+ [9], and Vivim [21]. To ensure accurate and meaningful compar-
isons, the segmentation results of all SOTA methods were obtained using their
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Table 1. Results on SOTA Comparison for the MVO segmentation task.

Methods and Tasks MVO Segmentation

SOTA methods Image/Video| Dice T Jaccard T HSD | Precison 1 Recall 1
UNet [18] Image 0.4742 0.4603 10.4260 0.6351  0.6290
UNet++ [25] Image 0.4893 0.4709 7.5933  0.7355  0.6290
TransUNet [2] Image 0.4942 0.4878 9.9162  0.8145 0.5829
SwinUnetR [6] Image 0.4481 0.4300 7.5491  0.6572  0.6541
AFB-URR [15] Video 0.4372 0.4361 39.3599 0.7158  0.5872
DPSTT [14] Video 0.5026 0.4895 8.7484  0.7655 0.5726
PNS+ [9] Video 0.4957 0.4957 144.9119 0.8609 0.5565
Vivim [21] Video 0.5264 0.5099 85704  0.6573 0.6397

Our Proposed Method Video ‘0.5556 0.5440 7.2389 0.8710 0.5951

(a) Frames (full-size and zoomed-in) (c) Ours (d) Ours (Uncertainty Map)  (e) Unet [18] (f) Unet++ [25] (g) Vivim [21]

Fig. 3. Visual comparisons of MVO segmentation results produced by our framework
and SOTA methods. "GT" denotes the ground truth.

publicly available implementations or our implementation when the code was
not available.

Table 1 presents the quantitative results of our proposed network alongside
those of the compared methods for MVO segmentation. Results reveal that most
video-based methods consistently outperform image-based methods. We mainly
focused on the Dice, Jaccard, and HSD values since they provide a clear and
intuitive way to assess if the boundaries of MVO is being accurately identified.
Among the evaluated approaches, Vivim [21] achieves the highest scores. No-
tably, our proposed method surpasses Vivim [21] in terms of Dice, Jaccard and
HSD, exhibiting superior overall performance. Specifically, our method improves
the Dice score from 0.5264 to 0.5556, the Jaccard score from 0.5099 to 0.5440,
the HSD score from 8.5704 to 7.2389. The resulting p-values (0.006 for Dice,
0.009 for Jaccard, 0.001 for HSD) from the Wilcoxon Signed-Rank Test also
indicate a statistically significant improvement over the best baseline vivim. Ad-
ditionally, Fig. 3 provides a visual comparison of MVO segmentation outcomes
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Table 2. Results on Ablation Study for the MVO segmentation task.

Methods and Tasks MVO Segmentation

Spatial | Motion | Guided |Uncertainty| .. .
Encoder |Encoder|Decoder | Refinement Dice T Jaccard T HSD | Precison 1 Recall 1

0.3271 0.3023 10.1626 0.3690 0.6932
0.4311 0.4195 10.9859 0.6707  0.6223
0.4636  0.4589 26.5120 0.7381  0.5712
0.5229 0.5134 5.4888 0.8434  0.5906
0.5556 0.5440 7.2389 0.8710 0.5951

ANENEIENEN
AN
AR
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Table 3. Results on Extended Study with various number of input frames.

Methods and Tasks MVO Segmentation
Number of Frames for Video Inputs| Dice 1 Jaccard T HSD | Precison 1 Recall 1
5 0.5162 0.5116 23.6467 0.8701  0.5784
10 0.5556 0.5440 7.2389 0.8710 0.5951
15 0.4810 0.4708 8.1463 0.7518  0.6149
30 0.5143 0.4957 6.4272 0.7236 0.6225

produced by our network and other SOTA methods on randomly selected video
frames. Remarkably, our method demonstrates the capability to accurately seg-
ment MVOs of varying sizes and diverse shapes from input CMR video frames.
The refined uncertainty maps are included to demonstrate the effectiveness of
the uncertainty scheme. We also include a case where our method encounters a
challenge due to the subtle motion differences.

3.4 Ablation Study

To validate the contributions of each component in our approach, we conducted
a comprehensive ablation study. The data presented in Table 2 clearly demon-
strate that the model’s segmentation performance improves when both the static
and motion encoders are activated. These findings align with our hypothesis that
Cine CMR lacks the contrast-enhancing benefits provided by LGE CMR and,
as a result, depends predominantly on motion features for the accurate identifi-
cation of MVO regions. Furthermore, when the model is combined with the un-
certainty modelling scheme, the segmentation performance is further enhanced,
as illustrated in Table 2. This highlights the complementary role of uncertainty
modelling in optimizing segmentation accuracy.

3.5 Extended Study

To evaluate the clinical applicability of our proposed method in resource-efficient
scenarios, we also examined the impact of varying the number (5/15/30) of input
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frames fed into the model. The corresponding results are presented in Table 3.
A decline in performance was observed when the number of video frames was
reduced to 5. We hypothesize that this decrease is attributed to the interplay
between the number of frames and the magnitude of pixel differences in the resid-
ual frames, as well as the limited motion features available when fewer frames
are used. Conversely, as the number of frames increases, the pixel magnitude in
the residual frames also diminishes, with 15 frames yielding the smallest pixel
differences in the residual frames.

4 Conclusion

In this study, we present a novel framework designed to effectively learn and in-
tegrate spatial and temporal information, as well as improve segmentation accu-
racy through a dual-branch encoder, guided decoder, and uncertainty-driven re-
finement by leveraging video sequences for MVO identification using Cine CMR.
Comprehensive experiments conducted on clinical imaging datasets highlight the
robustness and efficacy of the proposed framework in enhancing segmentation
quality. These findings provide strong evidence for the potential of our method
as a contrast-free imaging technique, offering a standalone diagnostic solution
for evaluating myocardial damage.
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