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Comparison between previous work and ours. The morphological patterns (a)
and complex characteristics (b) of VETC pose challenges for segmentation. Previous
works utilized limited annotations (c), relying on feature encoders (d) or visual prompt
learn patch-level representations. We fitted pathology-specific prompt (f) and
propagated them to the pixel level (g) for sampling and learning. The results (h)

demonstrate that our method achieves superior performance.

Abstract. Segmenting hepatocellular carcinoma (HCC) and vessels en-
capsulating tumor clusters (VETC) are new paradigm for prognostic
analysis. However, the clustered morphology of VETC nuclei, which is
difficult to represent at the patch level, makes segmentation highly chal-
lenging. Recent visual prompt-based methods incorporating nucleus prior
knowledge have shown promise but assume patch pixels lack spatial cor-
relation, failing to capture nuclei morphology at the pixel level. To ad-
dress this, we propose a Patch-to-Pixel Visual Prompt (VPP2P) frame-
work, which models VETC morphological features by propagating visual
prompts from patches to pixels. Built on contrastive learning, our semi-
supervised approach samples positive and negative pairs within patches

! % Contributed equally




2 J. Yu et al.

to enhance feature learning. Experiments show that VPP2P achieves per-
formance comparable to fully supervised methods using only 10% of the
training data. With 30% of the training data, VPP2P attains a Dice score
of 90.52%, outperforming state-of-the-art visual prompt-based methods
by an average margin of 6.6%. To the best of our knowledge, this is
the first semi-supervised deep learning approach for VETC morpholog-
ical analysis, offering new insights into HCC clinical research. Code is
available at https://github.com/sm8754/VPP2P.
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1 Introduction

The segmentation of hepatocellular carcinoma (HCC) and vascular encapsulating
tumor clusters (VETC) can assist in analyzing the prognostic status of patients,
which holds significant importance for cancer patients [1,2]. In recent years,
deep learning methods have achieved remarkable results in the tasks of HCC
and VETC segmentation [3,4]. The primary challenges in VETC segmentation
stem from the extremely limited availability of annotated data and the unique
morphological features of VETC images.

A major challenge in segmentation tasks is the limited availability of anno-
tated data. The mainstream approach to addressing this issue relies on semi-
supervised learning, primarily through self-training and consistency regulariza-
tion [5, 6]. Self-training methods generate pseudo-labels for unlabeled data and
use them alongside true labels to enhance supervision [7,8]. Consistency regu-
larization, on the other hand, ensures that models produce stable predictions by
applying various perturbations or transformations to unlabeled samples [9-11].
Despite their success in many domains, these methods struggle with segmenta-
tion granularity in VETC segmentation [12,13]. The key limitation is that they
extract features at the patch level while overlooking the morphological structure
of VETC nuclei, which appear in clustered patterns that are only discernible
at the pixel level. These models assume that pixels within a patch are spatially
independent, an assumption that fails due to the uneven distribution of pixels
within clusters. Visual prompting has emerged as a potential solution by incor-
porating prior knowledge about VETC morphology into the training process.
For instance, QAP trains a nucleus segmentation model while encoding the spa-
tial distribution of nuclei, and visual prompts leverage spatial and morphological
attributes to guide the backbone network [14]. However, these approaches still
rely on the flawed assumption of spatial independence within patches, failing
to capture specific spatial nuclear patterns. Therefore, a key research direction
is exploring how to apply visual prompts at a finer-grained level to improve
segmentation accuracy.

To address these limitations, we propose VPP2P, a semi-supervised Visual
Prompt framework that models morphological features from Patch to Pixel.
VPP2P utilizes nucleus location information as visual prompts and further sam-
ples positive and negative pairs within the patch, propagating the visual prompts
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to the pixel level to model complex morphological features inside the patch.
Experiments show that with 30% training dataset, VPP2P achieves a Dice of
90.52%, outperforming state-of-the-art visual prompt-based methods by 6.6%,
and an HD95 of 9.94%, at least 2% lower, demonstrating superior performance.

Our contributions can be summarized as follows. 1) We introduce a novel vi-
sual prompt method in VETC segmentation. This method introduces semantic
supervisory signals by analyzing the locations and quantities of nuclei, thereby
addressing the bottleneck of insufficient prior morphological knowledge for VETC
fitting. 2) We devise a novel semi-supervised network architecture that further
sampling positive and negative pairs within patches to propagate the visual
prompts to pixel level. This architecture addresses the issue of lacking seman-
tic supervisory signals. 3) We pioneer pixel-level semantic supervision signals
in facilitating the training of the VETC segmentation model to achieve impres-
sive performance, which offers fresh perspectives on the development of modern
VETC segmentation schemes.

2 Method

As shown in Fig.2, given an input I € R¥XWx3 two stages perform distinct
learning processes. The supervised stage trains the teacher model using labeled
data with cross-entropy Lgent. In the unsupervised stage, strong and weak aug-
mentations of I are fed into the student and teacher models, respectively. Both
branches share an extractor, projector, and predictor. Augmented images are also
input to the Morphology-Aware Prompt Generator (MAPG), whose parameters
are independently updated to generate visual prompts V' = {vy,v9,- -+ ,v,}. Vi-
sual prompts are dynamically fused with deep features to refine contrastive cues
through cross-layer positive/negative pair matching.
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Fig. 2. Overview of our method. VPP2P adopts a dual-branch architecture with su-
pervised and unsupervised learning. The unsupervised branch generates pseudo-labels
via the student model and optimizes training with Lsent, LMent, LCent, and Liotal-
The teacher model uses EMA for stability. VPP2P integrates MAPG to analyze nuclei
distribution, generating discriminative prompts with independent parameter updates.
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2.1 Visual-prompt generation

Inspired by [15], we enhance VETC segmentation by analyzing tissue morphol-
ogy. We compute spatial proximity between each nucleus (named ’source’) and its
surrounding nuclei (named ’target’) to generate visual prompts V. Specifically,
the aggregation/dispersion relationship can be characterized as a function of the
number of target objects varying with their spatial distance from source ob-
jects. Given the parsed tissue structure information 7, = {t&,c=1,--- ,C,n =
1,-+-, N} from an input image I, where t& denotes the n-th object of type ¢, we
count the number of neighboring points between source nuclei t?’;l’,,_ o € T,
and target nuclei t?:L... o € T, within a circular region of radius r. This process
is formulated as follows:
2

S [ &= N
K, = 3 ;H <1}1=1{1 [t — 2|2 < r) -wj;, where s, and tn € [1,C] (1)

where S represents the area of the circular region with radius r, I(-) is the
indicator function, C' is the total number of nucleus types, || - |2 denotes the
Euclidean distance between two objects, w;; is the edge correction factor, and A
is the intensity parameter.

To generate visual prompts V' that are highly correlated with image seman-
tics, we discretize the original spatial attribute K, into compact semantic units
Lt ={it, 15, ... 1!} using linear quantization based on uniform sampling p. To
enhance feature robustness, we use a learnable projection function p to sup-
press noise while preserving key attributes. A multi-layer Transformer encoder
Encoder(-) models implicit relationships via self-attention, generating structured
semantic representations Lt.

Based on the quantized representation L!, we generate task-specific visual
prompts encoding pixel-level VETC spatial attributes from nucleus segmenta-
tion. The prompt sequence V = {vg,v1,...,v,} through a conditional proba-
bility maximization strategy. Specifically, the generation process follows a joint
probability decomposition model based on the chain rule, expressed as:

n
P(VILY) = P(or| 9 [ PilVa.aor, E) (2)
i=2
Each prompt unit is generated under the constraints of the historical sequence
Vi,...i—1 and dynamically linked to quantized units L' via cross-attention. we
adopt a multi-layer Transformer decoder Decoder(-), where the i-th output cap-
tures temporal dependencies through masked self-attention and integrates at-
tribute semantics from L!. Learnable initial embeddings V initiate the process,
enabling the generation of visual prompts V' to combine historical context with
quantized semantic features.

2.2 Comparative learning across levels

First, we extract a joint feature map Fioint = {fhw | h € H,w € W} from the
image and visual prompts, where h and w represent the spatial dimensions of fea-
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ture map. Subsequently, the feature map is partitioned into n, non-overlapping

patches { fp )}l 1, where the subscript p denotes patch-level feature. We define
positive pairs as spatially aligned teacher-student model pairs at two levels: (1)
patch-level pairs {5, £, 1 and (2) pixel-level pairs { £, F,2"")}, where f
and f denote features from the teacher and student models, respectively.

For negative pairs, we use a heterogeneity-aware sampling strategy. By cal-
culating the foreground pixel proportion FP? for each patch, we select pairs
with maximal F'P? divergence (high foreground proportion (HFP) vs. high back-
ground proportion (HBP)) to form negative pairs { fp £ fo (k)}. The computation
is formulated as:

FP2 = i Z H(Mstuffed(h,w) = ]-) (3)

L (h,w)€f,

where (2, represents the set of pixel coordinates within a patch, Msyyged(h, w)
denotes pseudo-labels from the student or teacher models, and I(-) is the indi-
cator function. For pixel { f;g’w)}(h,w)e ©, Within each patch, we establish many-
to-many relationships. For negative patches, all pixels are treated as negative
pairs {fp (h w), f; (h’w)} to enhance fine-grained discriminative capability, while
preserving local consistency among pixel pairs in positive patches.

We employ an exponential equation based on cosine distance to enhance
compactness for positive pairs and separation for negative pairs at patch and
pixel levels. A contrastive learning process is designed for each pixel feature to
pull positive samples closer and push negative samples apart, formulated as:

(h,w w)
L’pixe]:—ﬁ Z log eXp(( X ’fpxh >/T)

(4)

haw)  F(h,
p (h,w)€R, eXp ((fpx w) ) ;gx v ) /T)
where fpX ) denotes the pixel feature at spatial location (h, w), }-L(h"w) is its cor-

responding positive sample feature, fpx w) represents the i-th matched pixel-level
feature, and 7 is a temperature parameter to regulate the similarity distribution.

To further incorporate semantic information at the patch-level, we implic-
itly integrate hierarchical contrastive learning into the overall computation. The
formulation is expressed as:

nfb exp (( l) +(Z ) /T)
Ltotal - - Z 0og ne @) 7() (5>
Z] 1eXp((p Jp )/T)
where ng, = n,—ny,, denotes the number of patches excluding uniform proportion
(UP) patches, and fp(,l) represents the i-th patch-level feature matched with fél).

2.3 Loss function

The model uses pseudo-labels from predictions to form sample pairs, refining
them by linking prediction confidence maps with pseudo-labels. This is formal-
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ized as:

H W
EMent = *ﬁ Z Z (pz;w IOg(Pz,w) + (1 - p%:w) log(l - p’}l;,w)) (6)
h=1w=1
For the labeled branch, we use Lgens to measure the discrepancy between pre-
dicted probabilities p{yw and ground truth labels by, ,,. To improve robustness, we
minimize Lcent to reduce the distributional difference between student-generated
pseudo-labels Bh,w and teacher predictions pz;w, enforcing invariant semantic fea-
ture learning. Both losses are computed using cross-entropy.

Table 1. Compared with SOTA methods.

Dice HD95 Dice HD95

Methods Types 5o training dataset 10% training dataset
TransNuseg|[16] 63.68+0.25 36.16+0.17 66.29+0.22 34.30+0.19
CausalCLIPSeg[17] Full-Sup 65.18+£0.39 33.544+0.44 73.27+0.34 17.22+0.42
PRISM[1§] 69.95+0.26 28.024+0.23 74.96+0.31 16.86+0.38
MS-Seg[19] 68.58+0.49 27.624+0.46 72.17+0.49 21.1840.56
LVM-Med|[20] 80.16+0.61 16.3940.72 82.70+0.57 14.66+0.69
CDCL|21] 77.94+0.37 19.8440.29 80.42+0.25 16.21£0.24
ABD-Seg|[22] Semi-S 79.37+£0.50 17.2240.46 82.73+0.33 14.60+0.32
MiDSS|[23] CMmSUD 89 62:40.54  14.5620.50  84.99+£0.51 13.07+0.45
KnowSAM]|24] 84.17+£0.62 13.74+0.38 85.65+0.34 12.96+0.37
Ours 86.93+0.47 12.15+0.37 89.75+0.24 10.8+0.32

Dice HD95 Dice HD95

Methods Types 399 training dataset 100% training dataset
TransNuseg 72.4440.26 20.874+0.21 84.16+0.10 13.76+0.14
CausalCLIPSeg  pyj.gyp 79-8540.37 16.49£0.41 85.58:£0.25 12.83%0.19
PRISM 80.81+£0.36 16.054+0.39 88.524+0.18 11.2940.20
MS-Seg 72.35+£0.37 20.43+0.42 78.39+0.22 17.46+0.36
LVM-Med 83.42+0.40 14.344+0.45 85.26+0.26 13.05+0.30
CDCL 81.93+0.23 14.414+0.27 85.51+0.19 12.7540.26
ABD-Seg Semi-S 85.27+£0.35 13.184+0.38 86.37+0.25 12.21£0.33
MiDSS CMISUP 86 8740.28  11.99+0.14  87.92+0.20 11.5240.11
KnowSAM 87.48+0.37 11.744+0.32 87.944+0.33 11.49+0.34
Ours 90.52+0.29 9.94+0.18 90.97+0.16 9.47+0.22

3 Experiments and Results

3.1 Datasets and Experimental Settings

Datasets. The dataset includes 365 WSIs (20x) of liver biopsy tissues from the
First Affiliated Hospital of Zhejiang University School of Medicine. Each WSI
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Fig. 3. Visualization results. Red regions: VETC. Blue regions: non-VETC.

was divided into 256 x256 patches by a sliding window, filtering out low-quality
regions [25]. A 4-fold cross-validation was conducted, and semi-supervised exper-
iments used 5%, 10%, and 30% of training data. Evaluation metrics included the
Dice Coefficient for segmentation accuracy and HD95 for boundary precision.

Implementation Details. Data augmentation included Color Jitter, Ro-
tation (£15°), Grayscale, and Noise. DenseUNet [26] serves as the feature ex-
tractor, with a projector mapping features to 128 x 32 x 32. The token-level
patch size is 4 x 4. HoVer-Net [27] is used for nucleus segmentation, and ViT-
L/16 [28] encode-decode the prompts to 10 x 1024. By flattening the 32 x 32
feature map, we concatenate each pixel’s 10-dim prompt with its 128-dim mor-
phology vector—yielding a 138-dim representation—and fuse prompts via soft
pixel alignment across all 1024 positions, thereby enabling true pixel-wise super-
vision. Unlike position-sensitive token assignments, the prompt is task-specific
yet class-agnostic. Loss weights were set as: wsent = 1, Wiotal = 0.1, Whent =
0.01, waent = 0.1. EMA updates teacher and student models at a 0.99:0.01 ratio.
Adam optimizer was used with a le-4 learning rate.

3.2 Comparision with SOTA Methods

As shown in Table 1, experiments encompass a wide range of training paradigms,
including fully supervised, semi-supervised, vision models, language-vision prompts,
SAM-based prompts. Evaluation is performed across varying labeled data levels.
VPP2P outperforms supervised methods with less training data, achieving
comparable results using only 10% dataset. With 30% labeled data, it attains a
Dice of 90.52%, surpassing PRISM (9.71%), LVm-med (7.1%), and KnowSAM
(3.04%) by an average of 6.6%. This benefits from task-specific prompts at a finer
pixel level. VPP2P reduces HD95 by 6.06% and 2.16% compared to PRISM and
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Fig. 4. Feature space analysis and model interpretability.

KnowSAM with just 10% data. As shown in Fig. 3, it enhances fine-grained
segmentation, particularly excelling in edge clarity and structure preservation.

3.3 Ablation Study

As shown in Fig.3, we configured three variant methods based on prompt granu-
larity and semantic source for analysis to validate the effectiveness of pixel-level
prompting and sampling strategy. The results demonstrate that pixel-level vi-
sual prompts significantly outperform patch-level visual prompts and pixel-level
random prompting. The visual prompting method successfully captures the clus-
tered morphological features of VETC nuclei. Patch-level visual prompts fail to
model the distribution characteristics of nuclei. Pixel-level random prompts are
unable to capture the clustered distribution features of nuclei.

3.4 Feature spatial distribution and interpretability

Figure 4 illustrates the distribution of the patch embedding in the semantic
space. It clearly delineates the boundaries between VETC and non-VETC re-
gions, indicating that visual prompt method effectively captures the morphologi-
cal characteristics of VETC. Additionally, our model selects three typical VETC
patches through clustering, suggesting that morphological observations of these
areas could provide valuable diagnostic references for clinicians.
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4 Conclusion

This paper introduces a novel patch-to-pixel visual prompt framework that lever-
ages pixel-level nucleus prior knowledge to enhance VETC segmentation. Con-
trastive learning structure propagates domain-specific visual prompts from patch
to pixel level. Experiments validate the effectiveness, demonstrating superior
performance across various benchmarks. Future work will evaluate diverse clin-
ical cohorts to assess generalization, as well as explore the influence of various
external segmentation networks on pixel-level feature propagation.
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