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Abstract. Deep learning has shown potential to enable automated per-
sonalized cancer treatment by automating radiotherapy treatment (RT)
planning. However, generalizing RT planning across multiple protocols
with deep learning remains a critical challenge due to the diversity of clin-
ical requirements. This paper introduces TREAT: a unified Text-guided
Radiotherapy for dose prEdiction in Automated Treatment planning
to address these complexities. By leveraging conditional text embed-
dings using the CLIP text-encoder, the model dynamically adapts to
protocol-specific requirements, enabling the generation of high-quality
per-protocol dose distributions. We propose an efficient text-conditioning
method, graph prompts pooling (GPP), to effectively leverage multiple
protocol-specific prompts, and dynamic batch weighting to balance the
model training using multiple datasets. We validated TREAT on five
datasets—two early-stage prostate, left and right partial breast, and
head-and-neck—using clinically relevant metrics: mean absolute error
(MAE) of homogeneity index (HI) and dose-volume histogram (DVH).
Compared to the protocol-specific model with the MAE-HI of 0.274
and the MAE-DVH of 7.46, TREAT achieves a superior performance of
0.062 and 2.87 for MAE-HI and MAE-DVH score, respectively. When
compared to baseline one-hot conditioning with the MAE-HI of 0.085
and the MAE-DVH of 3.35, GPP demonstrates its efficiency in adapt-
ing prompt-based conditioning for predicting dose distributions for di-
verse protocols. The code is available: https://github.com/mcintoshML/
TextGuided _RT.
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Fig. 1. The overview of TREAT. (A) Graph Prompts Pooling: Text prompts de-
scribing protocols (e.g., "Prostate high dose") are encoded to form a graph represen-
tation, Gin. Gin undergoes pooling via a self-attention graph pooling [18] to generate
Gout by capturing the semantic relationships among prompts, generating zies:. (B)
Text-Guided Dose Prediction: zic,: is used to condition a dose prediction model
for generating dose distributions tailored to protocol-specific requirements.

1 Introduction

Radiotherapy treatment (RT) planning is a critical component in cancer care,
with the goal of targeting the tumor with a prescribed radiation dose while
sparing surrounding normal healthy organs. Each cancer type and anatomical
site demands a specific treatment protocol with distinct dose prescriptions and
fractionations. Existing automated systems adjust RT planning for individual
patients within a protocol using inter-patient knowledge but require separate
models per protocol, preventing inter-protocol knowledge learning, which is cru-
cial for enhancing generalizability and enabling applicability across diverse pro-
tocols.

Deep learning (DL) has enabled patient-specific treatment plans by leverag-
ing large datasets without manual intervention [14,15,21,24,29,32]. For example,
DoseNet by Kearney et al. [13] and a pyramid-based framework by Gheshlaghi
et al. [9] have advanced automated RT planning for prostate and head-and-neck
cancers, respectively. However, these methods are limited to specific protocols
and cannot leverage inter-protocol knowledge.

Text-guided vision models have shown promise in improving medical image
analysis using clinical text [8,10,25,30]. Chung et al. [5] developed a diffusion
model for MRI reconstruction using text prompts from patient metadata using
a pre-trained text encoder, while Oh et al. [26] proposed a text-guided model for
target volume segmentation in RT. However, current text-guided models focus on
using prompts to condition downstream tasks but lack mechanisms to effectively
pool multiple conditioning prompts, limiting their ability to fully leverage the
semantically rich text embeddings and resulting in suboptimal conditioning. Liu
et al. [20] presented GPT-RadPlan using GPT-4Vision to interactively tune the
optimization parameters for RTP. However, a unified text-guided DL model for
directly generating dose distributions, which could significantly streamline RT
planning workflows, remains unexplored.

Thus, this study aims to address these gaps by proposing a protocol condi-
tioned model that leverages inter-protocol knowledge and text prompts to guide
dose prediction across multiple protocols. CT scan and segmentation protocols
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Table 1. Data characteristics, including (train/validation/test) splits.

Datasets Prescribed N}lm Regions of Interest
dose patients
. 110 PTV, prostate, rectum, bladder,
Prostate high 60 Gy (95/5/10) left /right femur, bowel
340 PTV70, brain stem, spinal cord,
OpenKBP [2] 70 Gy (200,/40/100) left /right parotid, esophagus,
larynx, mandible
111 PTV, rectum, bladder, left/right
Prostate low 42.7 Gy (77/11/23) fermur, bowel
. 223 PTV, Eval-Treated Volume-L,
Partial Breast Left 26 Gy (155759 45) heart, left /right lung
188 PTV, Eval-TreatedVolume-L,

Partial Breast Right 26 Gy 13, 539 heart, left /right lung

are often identical across RT protocols for a specific site (e.g., prostate), and
thus a single non-RT-protocol-aware model cannot accurately predict dose. For
simplicity, we henceforth refer to RT protocols only, and leave automated seg-
mentation out of scope. By conditioning on the protocols, the proposed model
leverages inter-protocol knowledge along with context (i.e., the specific protocol),
learning from all cases across protocols rather than being limited to per-protocol
cases, enabling better generalization through utilization of inter-protocol dose-
feature redundancies.

Contributions: We introduce a unified Text-guided Radiotherapy for dose
prEdiction for Automated Treatment planning (TREAT) which leverages text-
guided conditioning to embed inter-protocol information, improving dose predic-
tion across diverse protocols. We further propose graph prompts pooling to
dynamically generate robust text embeddings and dynamic batch weighting
to balance training losses during multi-dataset training. Our extensive experi-
ments show that TREAT outperforms existing protocol-specific models, and the
variations of TREAT with different pooling methods and text-encoders.

2 Methods and Materials

2.1 Datasets

We collected 972 patients from five RT datasets, split into 659 for training, 96 for
validation, and 217 for testing (Table 1). Prostate and partial left /right breast
datasets were collected from Princess Margaret Cancer Centre (Toronto, ON,
Canada), and processed using Med-ImageTools [16]. OpenKBP [2] is a public RT
dataset for head-and-neck cancer. We simplified the region of interests (ROIs)
into two binary maps: one for organs at risk (OARs) and one for target volumes
(TVs), reducing variability across protocols and improving computational effi-
ciency. We resampled CT and ROI maps to (256, 256, 96), z-score normalized
CT images, and min-max normalized target dose maps.
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2.2 Model Architecture

We utilized Swin-Transformer 3D U-Net [4](Swin U-Net) as the backbonef. Swin
U-Net is designed to capture hierarchical and spatial features from the inputs,
while being effectively adjustable when utilizing conditional inputs to adapt
to different conditions dynamically. Swin U-Net employs the Swin-Transformer
(Swin-T'), which uses shifted window attention to model long-range dependen-
cies in volumetric imaging efficiently. The inputs to TREAT consist of a single-
channel CT, z., and a two-channel ROI, x,, as shown in Fig. 2. All encoder and
decoder blocks are conditioned on ROI inputs to maximize their influence. The
encoder module extracts hierarchical features from CT and ROI inputs while in-
tegrating text conditioning to adapt to different contexts. It uses patch merging
layers, P™¢"9¢, to reduce spatial resolution and increase channel dimensionality.
Convolution blocks (Conv), in the encoder consist of two sequential convolution
layers, each followed by layer normalization (LN) and ReLU. Attention blocks
use shifted window-based multi-head self-attention, Attng.s, and feed-forward
layers with LN, incorporating cross-attention, Attn,..ss, between z. and x, to
enhance anatomical integration. The decoder mirrors the encoder with condi-
tion blocks, Conv, and Attention blocks, with the skip connections from corre-
sponding encoder blocks for feature propagation. In the decoder, TREAT uses
patch-expanding layers instead of merging. The final decoder block processes the
output through two convolution layers with a ReLLU activation.

2.3 Graph Prompts Pooling

We introduce Graph Prompts Pooling (GPP) to generate adaptive text
representations for conditioning the dose prediction model. The motivation be-
hind GPP stems from optimizing text representations for different protocols.
Unlike existing graph-based prompt-tuning methods [7,19], GPP instead di-
rectly leverages protocol-specific prompt embeddings to initialize a graph where
nodes represent text embeddings, and edges encode cosine similarity to pool
the best-combined embeddings. While the edge attributes remain non-trainable,
GPP updates node features dynamically during training to refine text represen-
tations. As shown in Fig. 2(A), we employ Self-Attention Graph Pooling? [18] to
iteratively refine the graph by alternating between graph convolution and pool-
ing operations, pooling the most informative nodes based on attention scores.
After each pooling step, global graph representations are extracted and com-
bined to generate the final text embedding, z4..¢, using fully connected layers,
FC. 2ty then dynamically re-weighting feature channels of z. utilizing squeeze-
and-excitation [12], based on attention scores calculated from x. and zsept.

2.4 Dynamic Batch Weighting
Dynamic Batch Weighting (DBW) assigns loss weights dynamically within
mini-batches during multi-dataset training with gradient accumulation. Unlike

Thttps://github.com /1152545264 /SwinUnet3D
https://github.com /inyeoplee77/SAGPool
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Fig. 2. Model architecture of TREAT. (A) Graph Prompts Pooling: Text prompts
are encoded into embeddings (30 X Ngim ) using CLIP text-encoder, where Ng;m = 512,
and processed through Self-Attention Graph Pooling to generate the final text embed-
ding ztezt (1 X Ngim). (B) Text-Guided Dose Prediction: The encoder-decoder
processes CT, z., and ROI, z,, inputs, conditioned on zie,:, with skip connections
ensuring effective feature propagation. (C) Encoder and Decoder Blocks: These
include a Condition Block, integrating ztc»: via global average pooling (GAP) and fully
connected layers, F'C, and an Attention Block, which applies self- and cross-attention
to enhance CT-ROI integration. Best viewed in colour.

fixed weighted sampling, which uses static weights based on the inverse of dataset
size across the entire training, DBW adjusts weights based on the dataset dis-
tribution within each mini-batch, mitigating the impact of dominant datasets.
We used a batch size of 2 and gradient accumulation of 4, thus DBW calculates
weights across 8 combined samples per mini-batch. This ensures that no single
dataset dominates the optimization process, allowing balanced learning from all
datasets, regardless of their size or sampling frequency.

2.5 Implementation Details

We used a L1 loss, calculated only for the voxels within ROIs to exclude non-
critical regions where dose prediction is trivial. We applied min-max normaliza-
tion using first-epoch average losses as max value per dataset, ensuring balanced
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dataset contributions. We used AdamW with an initial learning rate of 10~* and
an exponential learning rate scheduler with v of 0.96. We used PyTorch for the
model implementation using an NVIDIA L40S GPU.

3 Experiments and Results

ROIs Swin U-Net No Condition One-Hot BioBERT BioClinicalBERT TREAT (Ours) Clinical Dose ¢,
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Fig. 3. Qualitative comparison of dose prediction results across different conditioning
methods and datasets. Columns show CT and ROI inputs, predicted dose distributions
from various models and clinical dose distributions.
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We evaluated dose prediction performance using clinically relevant metrics:
MAE of Homogeneity Index (HI) [11], Dose-Volume Histogram (DVH) [2,14],
and voxel-wise MAE within the foreground of CT inputs. We employed DVH
metrics for in-house datasets from the clinical treatment guidelines from our
institution.

Experiment 1: TREAT vs. Protocol-specific models: We evaluated
TREAT against protocol-specific models; note that we trained the protocol-
specific models in Table 2 using our training datasets and present the average
performance across all datasets in Table 1. Compared to protocol-specific models,
TREAT achieved superior performance with MAE-HI, MAE-DVH, and MAE-
Voxel of 0.0621, 2.874, and 1.235, respectively. This demonstrates that, unlike
protocol-specific models, TREAT improves the adaptability for different proto-
cols by effectively integrating protocol-specific textual conditioning generated
from GPP to leverage inter-protocol information. We also compared TREAT
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Table 2. Performance of protocol-specific and unified dose prediction models. We show
the average scores across all datasets, presented as mean + std. The best scores are
in bold, and second-best are underlined. | indicates lower scores are better. TREAT

consistently outperformed across the majority of datasets and evaluation metrics.

Models Unified MAE-HI | MAE-DVH | MAE-Voxel |
U-Net 3D [6] 0.1243 £ 0.1178 4.442 + 4.873  1.542 & 0.622
V-Net [23] 0.2609 + 0.2076  7.700 + 7.939  4.455 + 0.872
DoseNet [13] 0.1348 + 0.1299  6.054 + 5.891  1.814 + 0.768
Residual U-Net 3D |[3] 0.1085 + 0.1067 4.742 + 5.422  1.717 & 0.608
HD U-Net [24] 0.1586 £ 0.1199  7.018 + 7.395  2.877 + 0.792
C3D [21] 0.1394 + 0.1204 6.496 + 6.205  1.916 + 0.891
Attention U-Net [27] 0.1353 + 0.0944  4.400 + 4.466  1.455 & 0.545
Swin U-Net 3D [4] 0.2739 + 0.2250 7.464 + 9.117  1.544 + 0.639
Dose-PYFER [9] 0.1044 + 0.1359 8.249 + 10.489  1.954 + 1.333
No Condition  «  0.0909 & 0.1239  4.466 + 5.288  1.488 + 0.571
One-Hot s 0.0847 £ 0.1190 3.353 + 3.933  1.269 + 0.496
TREAT (Ours) v 0.0621 =+ 0.0836 2.874 + 3.611 1.235 + 0.552

with No Condition, a unified model without any conditioning, and One-Hot
encoding methods, finding that TREAT outperformed both across all metrics.
Experiment 2: Ablation experiments: We conducted three ablation ex-
periments: (A1) Primary components, (A2) Text encoders, and (A3)
Pooling methods shown in Table 3. (A1) To validate the importance of each
component, we analyzed their individual contributions. The results showed that
each component enhanced dose prediction accuracy across all metrics. (A2) We
assessed the impact of four different text encoders; CLIP [28], BioBERT [17],
BioClinicalBERT [1], and PubmedBERT [31]. We generated text embeddings,
Ztext, using the text-encoders. CLIP outperformed others across all metrics, high-
lighting its flexibility for conditional dose prediction. (A3) We compared the
performance of four prompt pooling strategies—Random, Average, Multi-Layer
Perceptron (MLP), and GPP. GPP achieved the lowest errors across all metrics.
While MLP merges prompts dynamically, it discards original token features, lim-
iting its ability to capture token relationships for robust conditioning. We used
one randomly sampled prompt per case during training to expose the model to
all prompts, and a single representative prompt per dataset during testing.
Experiment 3: Significance of text conditioning: To evaluate the im-
portance of prompt components, we removed critical (e.g., site or prescription)
and non-critical (e.g., filler words) elements from input prompts®. For example,
when removing critical words from the prompt "prostate high dose", it be-
comes "cancer dose". Table 4 shows dynamic pooling methods, MLLP and GPP,
heavily rely on critical information for generating the semantically plausible con-
ditioning, with a huge performance drop of -74.64% relative difference (RD) for
GPP, when critical words were removed. In contrast, removing non-critical words

$All prompts can be found in https://github.com/mcintoshML/TextGuided RT
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Table 3. Results of the three ablation experiments: Al (primary components), A2
(text encoders), and A3 (pooling methods). N¢ refers to No Condition.

Exp Models

MAE-HI |

MAE-DVH | MAE-Voxel |

Ne 0.1103 + 0.1271 6.312 + 6.984 2.575 + 1.033
CLIP 0.1047 £ 0.1257 4471 £ 4.960 1.562 % 0.638
Al CLIP+GPP 0.0845 & 0.1138  3.563 &+ 4.770  1.573 % 0.759
CLIP+GPP{DBW  0.0621 + 0.0836 2.874 + 3.611 1.235 + 0.552
BioBERT [17] 0.0950 + 0.1324 4.245 & 5.072  1.389 + 0.549
BioClinical BERT [1]  0.0890 & 0.1191 4.186 + 4.892  1.387 + 0.577
A2 PubmedBERT [31] 0.0671 & 0.0917 3.034 & 3.684 1.220 + 0.492
CLIP [28] 0.0621 + 0.0836 2.874 + 3.611 1.235 & 0.552
Random 0.0752 £ 0.1072 3.679 £ 4.167 1.319 + 0.546
Average 0.0820 & 0.1195 3.736 & 4.256  1.356 % 0.543
A3 wMLp 0.0774 + 0.1116  3.262 + 3.845  1.256 + 0.523
GPP 0.0621 + 0.0836 2.874 & 3.611 1.235 + 0.552

Table 4. MAE-DVH of four different pooling methods when critical and non-critical
text components were systematically removed from the input prompts. RD(%) stands
for relative difference of Removed compared to the Original.

Variations Pooling Dynamic Original | Removed | RD(%)
Random 3.679 £ 4.167 3.799 £ 4.267 -3.262
Critical Average 3.736 £ 4.256 3.851 £+ 4.406 -3.078
removed MLP v 3.262 + 3.845 7.879 + 8.387 -141.54
GPP (Ours) v 2.874 £+ 3.611 5.019 + 5.617 -74.64
Random 3.679 £+ 4.167 3.686 + 4.227  -0.190
Non-Critical  Average 3.736 + 4.256 3.732 + 4.271 0.107
removed MLP v 3.262 + 3.845 3.255 + 3.868 0.215
GPP (Ours) v 2.874 + 3.611 2.871 + 3.614 0.104

had negligible impact, 0.104% RD for GPP, demonstrating its ability to focus
on meaningful textual conditions while ignoring irrelevant information.

4 Discussion and Conclusion

In this study, we proposed a unified dose prediction model for RT planning. Our
experiments on five different datasets demonstrated that our proposed approach
outperformed protocol-specific models and other variations.

We observed that a unified model without any conditioning still outperformed
protocol-specific models. This shows that even without providing additional con-
text, the model can utilize the visual relationship between CTs and ROIs across
protocols, enabling the generalizable dose prediction without requiring additional
context. In addition, one-hot encoding improved performance, showing the sig-
nificance of conditioning for protocol-specific encoding. While one-hot encoding
differentiates protocols, it cannot capture richer semantic relationships between
them as shown in Table 2. TREAT leverages pooled textual features using GPP,
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transferred from the prior-knowledge from the CLIP text-encoder which can cap-
ture semantic similarities (e.g., "prostate high dose" is closer to "prostate
low dose" than "head and neck cancer"), enhancing inter-protocol informa-
tion for dose prediction. Moreover, TREAT generalizes across prompt variations
by leveraging GPP to learn inter-protocol structure, rather than relying on spe-
cific token formulations. This offers a significant advantage over one-hot con-
ditioning, enabling TREAT to handle inter-protocol knowledge under varying
clinical conditions, which is crucial for generalizable automated RT planning.

Future work will focus on converting predicted doses into clinically deliverable
formats and validating them in prospective studies. This is essential for ensur-
ing the practical adoption of TREAT in RT planning workflows [22]. Removing
critical words from prompts resulted in performance drops, highlighting the im-
portance of text conditioning and the potential of TREAT for zero-shot dose
prediction using free-form clinical text. Interestingly, the text-encoders tailored
to biomedical texts still underperformed compared to CLIP. It is potentially due
to the relatively simple prompts used in TREAT, thus exploring the use of com-
plex clinical context (e.g., patient metadata) still remains a future work. While
our loss aligns with clinical goals, adding non-ROI losses may further improve
safety and is planned for future work.

In conclusion, we introduced TREAT, which leverages GPP for integrating
inter-protocol textual information and DBW for balanced multi-dataset training.
TREAT outperformed traditional protocol-specific models, proving its scalability
and efficiency in improving clinical workflows and patient care across diverse
protocols, paving the way for future integration into clinical practice.
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