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Abstract. The early diagnosis of Alzheimer’s Disease (AD) through non
invasive methods remains a significant healthcare challenge. We present
NeuroXVocal, the first end-to-end explainable AD classification system
that achieves state-of-the-art performance while providing clinically in-
terpretable explanations. Our novel dual-component architecture con-
sists of: (1) Neuro, a multimodal classifier implementing a unique trans-
former based fusion strategy that projects acoustic, textual, and speech
embeddings into a common dimensional space for complex cross-modal
interactions; and (2) XVocal, a specialized RAG-based explainer that
retrieves relevant clinical literature to generate evidence-based explana-
tions. Unlike previous approaches using late fusion or simple concate-
nation, our architecture enables both robust classification and meaning-
ful clinical insights. Using the 1S2021 ADReSSo Challenge benchmark
dataset, NeuroXVocal achieved 95.77% accuracy, significantly outper-
forming previous state-of-the-art. Medical professionals validated the
clinical relevance of XVocal’s explanations through structured evalua-
tion. This work advances beyond pure classification to bridge the gap
between machine learning predictions and clinical decision-making. Code
available at:

https://github.com /NNtamp/NeuroXVocal.
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1 Introduction

Alzheimer’s Disease (AD) has emerged as a critical global health concern, af-
fecting over 55 million people worldwide with nearly 10 million new cases an-
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nually [1]. Early detection through non-invasive methods remains crucial for
effective intervention and treatment planning. While traditional diagnostic ap-
proaches rely on neuroimaging or invasive procedures, recent advances in artifi-
cial intelligence have opened new possibilities for early detection through speech
analysis [2,3]. This paper presents NeuroXVocal, a novel dual-component sys-
tem that not only classifies but also explains its diagnostic predictions through
speech analysis of patients describing images, whether they are identified as hav-
ing Alzheimer’s disease or being cognitively healthy. The relationship between
cognitive decline and speech patterns has been extensively studied using the
ADReSSo benchmark dataset [4]. Syed et al. achieved significant results using
functionals of deep textual embeddings, reporting 84.51% accuracy in AD de-
tection [5]. Shah et al. further investigated language-agnostic speech representa-
tions, demonstrating the effectiveness of speech intelligibility features with 79.6%
accuracy [6]. More recently, Fu et al. proposed a multimodal fusion method com-
bining acoustic and semantic information using ImageBind audio encoder and
ELMo, achieving 90.3% accuracy [7]. Li et al. demonstrated promising results
using Whisper-based transfer learning, achieving 84.51% accuracy and 84.50%
Fl-score by innovatively using full transcripts as prompts during fine-tuning [§].
The latest advancement by Lee et al. introduced a graph neural network lever-
aging image-text similarity from vision language models, achieving 88.73% accu-
racy [9]. While these approaches have shown promising results in classification,
the field has seen limited progress in explaining the reasoning behind diagnostic
predictions. Recent work by Igbal et al. employed Local Interpretable Model-
agnostic Explanations (LIME) and SHapley Additive exPlanations (SHAP) to
provide insights into linguistic markers of cognitive decline [10]. Similarly, Bang
et al. explored the use of LLMs for generating evidence-based explanations of
speech patterns, though their approach was limited by the interpretability of
the underlying language model [11]. However, these studies still face challenges
in providing comprehensive, clinically-actionable explanations that bridge the
gap between machine learning predictions and medical decision-making. Build-
ing upon these foundations, we present NeuroXVocal, which addresses these
limitations through the following key contributions:

1. Novel Architecture: First end-to-end framework seamlessly integrating AD
classification with clinically interpretable explanations, where multimodal
features contribute to both diagnosis and explanation generation.

2. Advanced Fusion Strategy: A transformer-based architecture that projects
acoustic features, textual features, and speech embeddings into a common
dimensional space before fusion, enabling complex cross-modal interactions
superior to existing late-fusion approaches.

3. Clinical Explainability: Introduction of XVocal, a specialized RAG compo-
nent that retrieves relevant AD research to generate evidence-based expla-
nations. Medical professionals validated its clinical relevance, confirming its
potential as a diagnostic support tool.
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4. State-of-the-art Performance: Achievement of 95.77% accuracy on the ADReSSo
benchmark, significantly outperforming existing methods while maintaining

2

interpretability.

Methodology

Our proposed novel NeuroXVocal system consists of two primary components, as
in Fig. 1: (1) the Neuro classifier for AD detection through multimodal analysis of
speech data, and (2) the XVocal explainer for generating clinically-interpretable
justifications. The system processes input audio samples through multiple par-
allel streams to extract complementary features before fusion and classification.
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2.1 Feature Extraction and Processing

Let x be an input audio sample. From this input, we extract three distinct feature
representations. The acoustic features f,(z) = ¢,(z) € R*7 comprise temporal
characteristics (speech/pause ratios), prosodic features (pitch, intensity), artic-
ulation metrics, spectral properties, voice quality indicators (jitter, shimmer,
harmonics-to-noise ratio), and 13 Mel Frequency Cepstral Coefficients(MFCC)
coefficients with their standard deviations. These features (47 in total) undergo
standardization and missing value imputation. For speech embeddings, we em-
ploy Wav2Vec2-base-960h [12] after converting audio to mono and resampling
to 16kHz:

fe(x) = Mean(Wav2Vec2(Preprocess(x))) € R (1)

where the embeddings are standardized before further processing. The textual
features are obtained using Whisper ASR [13] for transcription followed by
DeBERTa-v3-base [14] encoding:

f+(x) = DeBERTa(Preprocess(Whisper(z))) € R7® (2)

where preprocess includes lowercase conversion, special character removal, and
space normalization.

2.2 Neuro Classifier

The classification component implements a novel fusion architecture. We first
project the acoustic and speech embedding features to a common dimensional
space:

ha = Linear(f,(z)) € R™®  h, = Linear(f.(z)) € R (3)

The fusion process concatenates these projections with the text embeddings in
the projected dimensions of 514 x 768:

H = [ha; he; fi(w)] € RO (4)

A two-layer transformer encoder processes this representation. Each layer im-
plements multi-head attention with 8 heads, where the input H is projected to
queries (@), keys (K), and values (V):

Attention(Q, K, V) = Concat(heady, ..., headg) W ©° (5)

where W is the output projection matrix, and each attention head is computed

as:

QW (EW/)"
Vdy

where WiQ, WE WY € R78x9 are learned parameter matrices, and d, = 96
is the head dimension. This is followed by a feed-forward network with GELU
activation:

wwy (6)

head; = softmax(

Z = FFN(Attention(H)) € R514x768 (7)
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The final classification uses a two-layer classifier:

p(ylz) = o(Dense(z)) (8)

where o is the sigmoid activation function for binary classification.

2.3 XVocal Explainer

The novel explainability component implements a RAG approach that processes
the extracted features along with the Neuro classifier’s prediction. The explana-
tion generation begins by constructing a structured prompt query ¢ (available
in project’s GitHub repository) through a template:

q = {class(p(y|x)) ® features(f,(x)) @ speech(f.(x)) ® transcript(fi(z))} (9)

The relevant literature corpus L is preprocessed into semantic chunks by splitting
each document into paragraphs and then into individual sentences to create a
fine-grained context pool {cy, ..., ¢, }. Using all-MiniLM-L6-v2 [16], we construct
a dense vector index:

E, = {MiniLM(c¢;) € R3*|c; € £} (10)

where each chunk is encoded into a 384-dimensional embedding space. These
embeddings are indexed using FAISS [15] L2 distance metric:

T = FAISS1»(E,) (11)

For retrieval, the query ¢ is encoded in the same embedding space and the top
5 most relevant chunks are retrieved using nearest neighbor search:

L, = {Z.search(MiniLM(q),k = 5)} (12)
The final explanation is generated using FLAN-T5-XL [17]:
E = FLAN-T5(q & £, 7, p) (13)

where 7 and p are the temperature and top-p sampling parameters respectively,
controlling the generation coherence.

3 Experiments and Results

3.1 Implementation Details

All experiments were conducted on Ubuntu using 8xNVIDIA A16 GPUs with
126GB system RAM. The Neuro classifier trained for a maximum of 200 epochs.
For the XVocal component, we used FAISS (CPU) for retrieval and deployed
using 4-bit quantization. Each training round was completed on an average of 9
hours in our setup.
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3.2 Dataset

We utilised the ADReSSo Challenge dataset [4] for the probable AD prediction
task. The data is organized in the diagnosis folder, with 166 patients in the train-
ing set (79 cognitively normal [cn|, 87 probable Alzheimer’s disease [ad]) and 71
patients in the test set. The test set is kept independent for transparent evalu-
ation. The dataset is accessible through DementiaBank membership, requiring
registration and administrator approval. The complete dataset documentation
is available through our project repository.

3.3 Results

Table 1. Performance comparison on ADReSSo dataset. A: Acoustic, T: Text, S:
Speech embeddings

Methodology Modalities|5-fold Accuracy(+ std%)|Acc|%| |F1l-score|%]
Syed et al.(2021) [5] T 84.51% | 84.45%
Shah et al.(2023) [6]] AT 79.60%

Fuet al.(2024) [7] | A+T 90.3% | 91.4%
Li et al.(2024) [8] TS 84.51% | 84.5%
Lee et al.(2025) [9] | T+S 88.73% | 88.23%
(Neuro)XVocal |A+T+S| 96.24% + 2.47% |95.77%| 95.76%

Regarding the results of the Neuro Classifier incorporated in our NeuroX-
Vocal methodology, we compared with prominent and recent state-of-the-art
methodologies as shown in Table 1. To evaluate the performance, we utilized
the widely adopted accuracy and F1-score metrics. As demonstrated in Table 1,
our Neuro classifier achieved robust performance across multiple evaluation sce-
narios. In the 5-fold cross-validation setting, we obtained an average accuracy of
96.24% with a standard deviation of 2.47%. When trained on the full training set
and evaluated on the independent test set, our method achieved 95.77% accu-
racy and 95.76% F1-score, substantially outperforming all previous approaches.
To assess the clinical relevance and utility of XVocal’s explanations, we con-
ducted a comprehensive qualitative evaluation with medical experts. Each expert
evaluated explanations for 20 patient cases (10 AD, 10 CN) using a structured
questionnaire with 10 criteria!, rated on a 5-point Likert scale. For the knowl-
edge base of the RAG component, we have incorporated a curated corpus of
10 seminal publications [18-27] covering linguistic markers, spontaneous speech
analysis, and LLM applications in AD detection.

The evaluation results (Table 2) demonstrate strong performance across mul-
tiple dimensions of clinical utility. XVocal achieved notably high scores in AD
marker identification (3.98) and explanation clarity (3.96), indicating its effec-
tiveness in highlighting relevant diagnostic features. The system also performed

! Questionnaire available at: https://forms.gle/rAFuC6ediUYrqQzf8
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Table 2. Criteria and expert evaluation results for XVocal’s explanations

Assessment Focus Scale Mean Score
Clear justification of diagno-|1-Not clear, 5-Very clear 3.96
sis

Pertinence  of identified|1-Not relevant, 5-Highly relevant 3.85
markers

Consistency with medical|l-No alignment, 5-High alignment 3.63
knowledge

Explanation-based confi-|1-Not confident, 5-Highly confident 3.63
dence

Recognition of disease indi-|1-No markers identified, 5-Highly appro- 3.98
cators priate markers identified

Utility for diagnosis 1-Not useful, 5-Highly useful 3.70
Coherence and plausibility [1-Not sound, 5-Very sound 3.74
Expected consensus 1-Very unlikely, 5-Very likely 3.56
Robustness of reasoning 1-Not at all plausible, 5-Highly plausible 3.77
Potential for misinterpreta-|1-Not misleading, 5-Highly misleading 2.38
tion

well in identifying relevant linguistic features (3.85) and maintaining logical
soundness (3.74), suggesting reliable diagnostic reasoning. Particularly notewor-
thy is the low score for potentially misleading aspects (2.38), indicating that
experts found minimal risk of misinterpretation in XVocal’s explanations. This
is crucial for clinical applications where accuracy and reliability are paramount.
The system also demonstrated good alignment with clinical understanding (3.63)
and strong utility for supporting diagnostic decisions (3.70). XVocal successfully
identified key speech markers such as increased pause durations and reduced
semantic fluency, connecting these features to established AD literature.

4 Ablation Study

To assess the contribution of each modality, we conducted systematic experi-
ments by removing components and adapting the network architecture accord-
ingly. For each combination, we modified the dimensions of the input layers to
match the sizes of the feature vector. The fusion layer and attention mechanisms
were adjusted proportionally while maintaining the core architecture design.
Results, as shown in Table 3, demonstrate the synergistic effect of multi-
modal fusion, with transcription features providing the strongest individual con-
tribution when combined with audio embeddings (91.30%). The transcription
features prove crucial, as configurations lacking this component show reduced
performance (84.78%). Acoustic features seems to be the weaker modality, sug-
gesting they capture complementary speech characteristics. The optimal per-
formance (95.77%) achieved with all three modalities indicates each component
contributes unique discriminative information essential for robust AD detection.
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Table 3. Ablation study results showing modality combinations

Audio |Audio| Text
Embed. | Feat. | Trans.| Accuracy|%]||F1-score| %]

v v v [95.77 95.76

v v [89.86 89.86
v v 191.30 91.29
v v 84.78 84.70

5 Conclusion

We presented NeuroXVocal, a novel dual-component system that advances the
state-of-the-art in both AD detection accuracy and clinical interpretability. Our
key contributions include: (1) the first end-to-end framework seamlessly integrat-
ing high-accuracy classification (95.77%) with evidence-based explanations, (2)
a transformer-based architecture enabling superior cross-modal fusion through
common dimensional space projection, and (3) a specialized RAG-based ex-
plainer validated by medical professionals for clinical relevance. Unlike previous
approaches focusing solely on classification, NeuroXVocal bridges the critical
gap between machine learning predictions and clinical decision-making. Future
work will focus on developing a real-time inference pipeline and implementing
streaming audio processing for immediate feature extraction. We plan to extend
the system with an interface for clinical deployment, incorporating incremen-
tal learning capabilities to adapt to new data patterns. Additionally, we aim
to expand the knowledge base with continuous literature updates and enhance
the RAG component with domain-specific prompt engineering for more targeted
explanations. Further validation through large-scale clinical trials will help es-
tablish NeuroXVocal’s efficacy as a practical diagnostic support tool.
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