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Abstract. Cerebral microbleeds (CMBs) are small hemorrhagic lesions
that pose significant challenges for accurate segmentation due to the high
rate of false positives and false negatives. CMBs have two subtypes: lo-
bar and deep microbleeds (MBs). Motivated by the strong association
between deep MBs and hypertension, we propose a blood pressure-driven
nnU-Net (BP-nnUNet) that integrates blood pressure (BP) prompt
into the state-of-the-art nnU-Net framework through three key strate-
gies. First, we estimate BP using the pre-trained Meta-matching model,
that requires only MRI images. This allows our method to be success-
fully applied to public datasets with missing clinical demographics. Sec-
ond, we categorize CMBs into lobar and deep MB, enriching input text
prompts with multiple classes while constraining the BP effect to deep
MBs. Lastly, we introduce a novel anatomically-aware joint prompt fu-
sion module that combines lobar and deep MB prompts. Experiments
on both in-house and public datasets demonstrate that our BP-nnUNet
outperforms existing CMB segmentation models and universal models
incorporating medical prompts. Ablation studies validate the effective-
ness of integrating subtype-level and case-level prompts, as well as our
fusion module. Our method paves the way for the incorporation of clin-
ically relevant information into a segmentation framework. Our code is
available at https://github.com/junmokwon/BP-nnUNet.

Keywords: Cerebral microbleeds - Blood pressure - Meta-matching -
Prompt-driven medical image segmentation
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Fig. 1. Visualization of two subtypes of cerebral microbleeds: (a) Lobar microbleed and
(b) deep microbleed. Red denotes microbleeds, blue denotes the lobar brain region, and
green denotes the deep supratentorial region.

1 Introduction

Cerebral microbleeds (CMBs) are small brain hemorrhages that appear as hy-
pointense lesions on T2*-weighted MRI [6I21]. The term micro indicates their
small size, typically ranging from 2 to 10 mm in diameter [2I]. Hemorrhages
exceeding this size threshold are no longer classified as microbleeds (MBs) but
as larger intracerebral hemorrhages [4]. Therefore, CMB segmentation is a chal-
lenging task that requires accurate localization of small lesions while dealing
with diverse voxel resolutions, varying from a fine-grained spacing of 0.2 mm?
to a coarse-grained spacing of 3.0 mm? [23].

Segmenting small lesions requires additional modifications to tune state-of-
the-art (SOTA) segmentation backbones, ranging from modifying loss functions
[19/14] to applying task-specific false positive reduction modules [15]. Existing
studies on CMB segmentation have proposed various false positive reduction
algorithms to overcome these challenges [I5/16]. AG-nnUNet [I5] extends the
original binary segmentation of CMBs to multi-label segmentation across lobar,
supratentorial, and infratentorial regions and CMB lesions using an nnU-Net [10]
backbone. This multi-label approach enhances the identification of CMB lesions
surrounded by brain parenchyma, thereby reducing false positives [5]. CMB-
UNETR++ [16] adapted the masked image modeling [7] technique to pre-train
both the encoder and decoder components of UNETR++ [22], demonstrating
superior performance over plain nnU-Net and UNETR++ for CMB segmenta-
tion.

Recently, leveraging text prompts has shown remarkable improvements in
medical image segmentation [I7JI826]. The CLIP-driven Universal Model [I7J18]
uses both image and CLIP-driven text embeddings as convolutional weights and
biases in the final convolutional layers. UniSeg [26] partitions a prompt into
universal and task-specific parts, achieving superior performance in both single
and multiple tasks. These studies emphasize that fusing imaging features and
text embeddings is particularly beneficial for medical image segmentation.

In this study, we propose BP-nnUNet, a blood pressure-driven nnU-Net
framework for CMB segmentation. CMB lesions are pathologically categorized
into lobar and deep MBs (Fig. [1)). High blood pressure (BP) is associated with
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Fig. 2. Overview of the blood pressure (BP) estimation pipeline. T1-weighted MRI
scans are processed using (1) HCP PreFreesurfer pipeline, (2) FMRIB’s Linear Reg-
istration Tool to register T1 images to a 1 mm?® MNI space, and (3) a pre-trained
Meta-matching model, which outputs five phenotypes representing the principal com-
ponents of BP measurements.

deep MB [6]. Our framework leverages medical text prompts from the pre-trained
text encoder of BiomedCLIP [27]. In addition, we use the estimated BP from a
pre-trained phenotype prediction model called Meta-matching [SJ2125], trained
on large datasets. This BP estimation procedure only requires MRI data and
thus can be applied not only to in-house datasets, but also to public datasets
where clinical demographics are missing. Furthermore, we introduce a novel
anatomically-aware joint prompt fusion module to effectively integrate our lobar
and deep MB prompts into the segmentation network. We collected 621 cases of
T1- and T2*-weighted MRI as an in-house dataset and evaluated our framework
using the public MICCAI VALDO 2021 challenge dataset [23]. Our BP-nnUNet
was evaluated against comparative methods, including task-specific models as
well as SOTA universal models.
Our main contributions are three-fold:

1. We are the first to incorporate BP data, reflecting the pathology of CMB le-
sions, into the CMB segmentation framework. Unlike the task-level prompts
used in universal models, BP reflects the underlying subject-level features.

2. The BP estimation procedure can be applied to anonymized public datasets
without requiring access to clinical demographics.

3. We introduce a novel anatomically-aware joint prompt fusion module that
achieves superior performance by leveraging a joint prompt of medical text
and BP data.

2 Methods

2.1 Blood Pressure Estimation

Fig. [2] summarizes the overall procedure for BP estimation using a pre-trained
Meta-matching framework [82/25]. Meta-matching was trained using 265 pheno-
types from the UK Biobank dataset [I], including diastolic BP, systolic BP, and
intraocular pressure [8]. While the original Meta-matching [§] was proposed us-
ing resting-state fMRI inputs, the subsequent study [25] extended its application
to T1 MRI inputs, leveraging the simple fully convolutional network as proposed
in [20]. Following the pre-processing pipeline for anatomical Meta-matching [3],
each T1 MRI scan yields five distinct blood pressure components, referred to as
BP eye C2 through BP eye C6.
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Fig. 3. Overview of our BP-nnUNet. Built upon nnU-Net ResEnc, we integrate lobar
and deep microbleed prompts along with imaging features at the final layer of the
residual encoder to predict binary segmentation masks for lobar and deep microbleeds.

2.2 Cerebral Microbleed Segmentation

We aim to develop a fully automated CMB segmentation framework by lever-
aging a joint prompt of medical text and BP data. Our proposed network, BP-
nnUNet, is illustrated in Fig. [3] To seamlessly integrate imaging features and
joint prompts, we propose an anatomically-aware joint prompt fusion module.

Subtyping approach. We categorize CMB lesions based on their pathology
as lobar and deep MBs, as illustrated in Fig. [I} applying different strategies for
each subtype. The process is automated and followed by proxy label genera-
tion as proposed in AG-nnUNet [I5]. MBs in lobar brain regions are classified
as lobar MBs, while those in infratentorial and deep supratentorial regions are
categorized as deep MBs. We follow the standardized medical prompt of "A mag-
netic resonance imaging of [CLS|" as used in the CLIP-driven Universal Model
[I7U18], obtaining 512-dimensional sentence embeddings using Biomed CLIP [27].
For lobar MBs, we use only a medical prompt as an input prompt. By contrast,
for deep MBs, we use both a medical prompt and the estimated BP as a joint
prompt, motivated by the fact that hypertension is the primary cause of deep
MBs [6]. Compared with a plain task-level prompt, our approach can enrich
medical prompts based on their subtypes.
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Anatomically-aware joint prompt fusion. We introduce a novel fusion ap-
proach, anatomically-aware joint prompt fusion, for CMB segmentation. As il-
lustrated in Fig. [3] our module integrates all input imaging features and joint
prompts, and processes them through stacked convolutional layers:

FP" = cat(F/™, StackedConv(MLP L (PF), MLPp (P}), Fi™)) (1)

where F/" denotes the imaging features from the two MRI modalities (i.e.,
T1 and T2*) of the i-th subject, obtained from the last convolutional layer
of the residual encoder. cat(-) denotes concatenation along the channel dimen-
sion, assuming given inputs have the same spatial dimensions. StackedConv(-)
first concatenates all inputs and then processes them through a stacked convo-
lutional layer, followed by instance normalization and LeakyReLU layers. There
are two separate linear projection layers: MLP; and MLPp, each projecting lo-
bar prompt PY € R®'2 and joint deep prompt P/ = cat(PP,PP) into spatial
vectors to ensure that both prompts have the same spatial dimensions as the
imaging feature F/". PP € R®'2 denotes the medical prompt for deep MBs and
PE € RS represents the estimated BP principal components.

3 Experiments and Results

3.1 Datasets

We collected 621 MRI scans as an in-house dataset and internally divided them
into 430 training, 87 validation, and 104 test cases. External validation was
conducted using the MICCAI VALDO 2021 challenge dataset [23], utilizing 38
of the 72 cases. We excluded 34 cases obtained using 1.5T MRI because the
Meta-matching framework requires 3T MRI inputs [25].

3.2 Implementation Details

All models except the CLIP-driven-UNet [I7/18] were trained using the nnU-Net
framework [IOUITI]. The input shape of 40 x 192 x 160 and the voxel resolution
of 1.0 x 1.0 x 3.0 mm? were automatically determined during the nnU-Net pre-
processing steps. For the CMB-UNETR++ [16], an input shape of 192 x 160
and a pixel resolution of 1 mm? were used. The CLIP-driven-UNet was trained
for 2000 epochs, employing cosine annealing with a warm restart for the initial
100 epochs, and an initial learning rate of le-4.

All T1-weighted MRI scans were pre-processed using HCP Prefreesurfer
pipeline [3] and registered to a 1 mm® MNI space [I2/I3] to estimate blood
pressure as described in Fig. 2] In addition, bias-corrected T1 MRI images were
registered to the native T2* space. For the T2*-weighted MRI scans, N4 bias
field correction [24] was performed, followed by skull-stripping using SynthStrip
[9]. Finally, the co-registered T1- and T2*-weighted MRI images were used as
multi-modal inputs.
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Table 1. Quantitative results of cerebral microbleed segmentation. The best perfor-
mance is highlighted in bold, and the second-best is underlined.

‘ ‘ In-house Dataset ‘ VALDO2021
Method | Venue |DSCT FiT SENT FPayel|DSCT Fi? SENT FPayel
UNETR++ [22] IEEE TMI 24 |44.02 61.17 60.47 0.990 |37.48 42.63 42.05 0.711
nnU-Net [10] Nat. Methods "21|51.68 67.54 66.56 0.423 |36.56 44.21 43.09 0.395
nnU-Net ResEncL [IT] MICCAI 24 |47.69 66.71 64.93 0.385 |41.08 47.40 49.12 0.447
CMB-UNETR++ [I6] BIBM '24  |47.28 65.34 62.23 0.750 |41.40 47.54 46.33 0.684
AG-nnUNet [I5] MICCAI 24 [47.02 65.97 66.14 0.433 |39.82 44.08 45.34 0.395

AG-nnUNet ResEncL [15]] MICCAI 24 |45.85 68.43 67.09 0.385 |44.66 48.16 46.88 0.184

CLIP-driven-UNet [I7]I8] MedIA 24 44.05 50.36 44.46 0.221 |34.15 40.79 39.04 0.368
UniSeg [26] MICCAI ’23 |48.85 63.40 69.82 1.163 [40.09 46.02 56.52 1.421

BP-nnUNet (Ours) ‘ MICCAI ’25 ‘57.48 67.95 70.97 0.269 |49.01 56.98 57.18 0.316

3.3 Evaluation Metrics

In addition to the Dice score (DSC), we used F; score, sensitivity (SEN), and the
average number of false positives per subject (FP,yg) as the evaluation metrics.
To assess whether the predicted CMB lesions were correct, we measured the
distance between the centroid of each predicted lesion and its nearest ground
truth by applying a distance threshold of 5 mm, following the CMB detection
criteria of the MICCAI VALDO 2021 challenge [23].

3.4 Quantitative and Qualitative Results

Table [I] summarizes the performance of our proposed framework and competing
methods. We compared two task-specific models, CMB-UNETR++ [16] and AG-
nnUNet [I5], with their respective backbones, UNETR++ [22] and nnU-Net [I0].
In addition, we included nnU-Net with a residual encoder (i.e., nnU-Net Res-
EncL [I1I]) and two prompt-driven universal models, CLIP-driven-UNet [I7J18]
and UniSeg [26] as the SOTA baselines. All baseline methods were trained for
binary CMB segmentation, as they were not originally designed for multi-label
segmentation. By contrast, our BP-nnUNet was trained to predict two classes:
lobar and deep MBs. For a fair comparison with the baselines, the predictions
of BP-nnUNet for lobar and deep MBs were converted into binary format.

Our BP-nnUNet achieved either the best or second-best performance across
all metrics. On the in-house dataset, BP-nnUNet achieved the best Dice score
and sensitivity, while achieving a close second in F; score and FP,,,. On the
VALDO 2021 dataset, BP-nnUNet outperformed the second-best baselines by a
significant margin in the Dice and F; scores. This emphasizes the robustness and
generalizability of our framework to unseen datasets. Fig. []shows the superiority
of BP-nnUNet in minimizing both false positives and false negatives, compared
with the most competitive baselines (AG-nnUNet ResEncL [I5] and UniSeg [26]).
These findings highlight the importance of designing input prompts that range
from task-level to subject-level prompts.
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Fig. 4. Qualitative results of cerebral microbleed segmentation. Predictions are given
in red while ground truth is given in yellow.

3.5 Ablation Analysis

We conducted ablation studies to evaluate the effectiveness of the BP data on
nnU-Net ResEncL [I1]. We considered three scenarios: no prompt (nnU-Net
ResEncL baseline), medical text prompt for both lobar and deep MBs, and
our joint prompt of medical text and BP data. Table 2] shows that our joint
prompt consistently outperformed other scenarios in all metrics except FP,yg.
Even the medical text prompt scenario outperformed all baselines in the Dice
and F; scores, particularly on the unseen datasets, demonstrating the superior-
ity of our CMB subtyping approach in designing input prompts. Furthermore,
incorporating case-level features, such as BP, significantly enhances the overall
performance of our BP-nnUNet, at the minor cost of only a slight increase in
false positives on unseen datasets. Hence, BP plays a crucial role in boosting the
CMB segmentation performance.

We also compared our anatomically-aware joint prompt fusion module with
other fusion methods, as shown in Table [3] Specifically, cross-attention refers
to the application of cross-attention between imaging features and joint prompt
embeddings. Single prompt fusion refers to the use of a medical text prompt for
a single class of CMB, whereas joint prompt fusion incorporates subtype-level
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Table 2. Ablation results on input prompts. BP denotes using blood pressure prompt.
The best performance is highlighted in bold.

Prompt ‘ In-house Dataset ‘ VALDO2021
Text BP| DSCt  Fit  SENT FPu,l| DSCt Fit  SENT FPayl

47.69  66.71 64.93 0.385 41.08 4740  49.12 0.447
v 46.55  67.55  67.05 0.442 45.41 55.13  53.29 0.237
v v 57.48 67.95 70.97 0.269| 49.01 56.98 57.18 0.316

Table 3. Ablation results on fusion methods. Single prompt denotes a common task-
level prompt for cerebral microbleeds. Joint prompt denotes subtype-level prompts for
both lobar and deep microbleeds. The best performance is highlighted in bold.

‘ In-house Dataset ‘ VALDO2021
Fusion Method | DSCT Fit  SENT FPayl| DSCT  Fif  SENT FPayl
Cross-attention 44.52 66.90 65.06 0.337 | 45.80 51.07 49.84 0.211

Single Prompt Fusion| 49.40 65.87 63.83 0.327 | 41.51 42.22 42.65 0.368
Joint Prompt Fusion | 57.48 67.95 70.97 0.269 | 49.01 56.98 57.18 0.316

prompts for both lobar and deep MBs. Table [3] shows the superiority of joint
prompt fusion on both the in-house and external datasets. Our ablation study
highlights the importance of CMB subtyping, which enables prompt fusion in a
joint fashion. By contrast, adopting a single task-level prompt was particularly
unsuccessful on unseen datasets. This aligns with the poor performance of the
CLIP-driven-UNet [I7/I8], which was also trained with a task-level prompt de-
rived from a pre-trained CLIP model. Therefore, applying subtype-level prompts
is essential for enhancing the CMB segmentation performance.

4 Conclusion

In this paper, we propose a joint prompt of medical text and BP data to fully
leverage the clinical characteristics of CMB subtypes. By enriching medical text
prompts from a task level to a subtype level and leveraging pathological details
through BP prompt, our framework achieved promising performance compared
with SOTA CMB segmentation methods and universal prompt-driven models.
Ablation studies revealed the effectiveness of our three design components: CMB
subtyping, incorporation of BP, and joint prompt fusion, all of which signif-
icantly enhanced the performance on unseen datasets. Specifically, employing
medical text prompts based on CMB subtypes outperformed the baseline meth-
ods on unseen datasets. Leveraging BP data effectively exploited subject-level
features, significantly boosting the CMB segmentation performance. Lastly, our
joint prompt fusion effectively utilized both BP and subtype-level prompts, de-
livering the best performance via BP-nnUNet.
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