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Abstract. Few-Shot Medical Image Segmentation (FSMIS) aims to seg-
ment novel classes of medical objects using only a few labeled images.
Prototype-based methods have made significant progress in addressing
FSMIS. However, they typically generate a single global prototype for
the support image to match with the query image, overlooking intra-class
variations. To address this issue, we propose a Self-guided Prototype En-
hancement Network (SPENet). Specifically, we introduce a Multi-level
Prototype Generation (MPG) module, which enables multi-granularity
measurement between the support and query images by simultaneously
generating a global prototype and an adaptive number of local proto-
types. Additionally, we observe that not all local prototypes in the sup-
port image are beneficial for matching, especially when there are sub-
stantial discrepancies between the support and query images. To alle-
viate this issue, we propose a Query-guided Local Prototype Enhance-
ment (QLPE) module, which adaptively refines support prototypes by
incorporating guidance from the query image, thus mitigating the nega-
tive effects of such discrepancies. Extensive experiments on three public
medical datasets demonstrate that SPENet outperforms existing state-
of-the-art methods, achieving superior performance.

Keywords: Few-shot learning - Medical image segmentation - Optimal
transport.

1 Introduction

Medical image segmentation aims to precisely delineate lesion or organ regions
and plays a critical role in disease diagnosis and treatment planning [19, 13].
Deep learning-based automatic medical image segmentation methods [11, 1, 16,
4] have made significant progress in recent years. However, training these data-
driven models demands extensive well-annotated datasets, which are particularly
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challenging due to privacy concerns and the need for clinical expertise. More-
over, these pre-trained models struggle to segment novel classes when only a few
annotated images are available.
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Fig. 1: Comparison between (a) the classic prototype-based network and (b) our
proposed Self-guided Prototype Enhancement Network (SPENet).

Few-shot learning has emerged as a promising solution in medical image
segmentation. The core concept of FSMIS involves utilizing information from
a limited number of labeled images (support set) to segment unlabeled images
(query set) of the same class. Prototype-based methods [20, 3,14, 10] have be-
come mainstream in FSMIS due to their generalization ability and robustness
against noise. As shown in Fig. 1(a), the classic prototype-based methods com-
press the support features into a global prototype using Masked Average Pooling
(MAP) [18], and then compute similarity with the query features. Despite its
excellent performance, this scheme has notable drawbacks: the global prototype
obtained via MAP loses local details, failing to effectively capture intra-class
variations between the support and query images.

Existing methods attempt to address this issue by mining finer-grained pro-
totypes. For example, Ouyang et al. [10] proposed ALPNet, which divides the
support image into fixed-size non-overlapping grids and extracts local prototypes
from these regions. Tang et al. [14] introduced DSPNet, which employs a clus-
tering algorithm to generate a fixed number of local prototypes for the support
image and fuses them through an attention mechanism. However, these methods
have limitations. ALPNet compromises the integrity of the local regions, while
DSPNet overlooks the variations in the sizes of different lesions or organs, re-
sulting in suboptimal segmentation due to the fixed number of local prototypes.
Moreover, these methods overlook the fact that, owing to substantial intra-class
variations (e.g., size, shape, appearance), not all local prototypes extracted from
the support image contribute positively to guiding the segmentation of the query
image.

To this end, we propose a Self-guided Prototype Enhancement Network
named SPENet for few-shot medical image segmentation, as shown in Fig. 1(b).
An ideal prototype should maintain global semantic information while preserv-
ing the local details of the object. To achieve this, we first design a Multi-level
Prototype Generation (MPG) module that generates both global and local pro-
totypes. Considering the diversity in the size of medical objects, we propose
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an Adaptive Local Prototype Generation (ALPG) module within MPG to gen-
erate an adaptive number of local prototypes based on the size of the object.
Furthermore, to mitigate the impact of support local prototypes that differ sig-
nificantly from the query image, we develop a Query-guided Local Prototype
Enhancement (QLPE) module. Specifically, we utilize optimal transport to eval-
uate and re-weight the support local prototypes based on information from the
query image. Finally, the global and refined local prototypes from the support
image are fused for matching. Extensive experiments on three public medical
benchmarks, including Abd-MRI, Abd-CT, and Card-MRI, demonstrate that
SPENet achieves leading performance.

2 Methodology

Problem Definition: The goal of FSMIS is to learn a segmentation model
from a training set Dyyqin With classes Cipqin, and then evaluate the model on
a test set Di.sr with novel classes Ciest, without re-training, where Ciqin N
Ciest = 0. Following previous works [10], we adopt the commonly used episode
paradigm for training and testing. Specifically, we randomly sample a series of
episodes from Dyygin and Dyest, resulting in Dypgin = {54, Qz}f\i{ and Diegr =
{S;,Qi}Nt«. Each episode consists of a support set S = {(I,, M)} and a query
set @ = {(I;,M,)}, where I and M represent the image and its corresponding
ground-truth, respectively. During training, the model predicts the segmentation
mask MP" for I, under the supervision of M, based on the information in S.
After several episodes, we obtain a trained segmentation model, which is used
to predict I, and compared with M, to evaluate the segmentation performance.

2.1 Overall Architecture

As shown in Fig. 2(a), our proposed SPENet consists of three main modules: (7)
a shared feature extraction network fy(-); (1) a Multi-level Prototype Gener-
ation (MPG) module; and (%) a Query-guided Local Prototype Enhancement
(QLPE) module. Specifically, given the support image I and the query image I,
both are passed through the parameter-shared feature extraction network fy(-)
to obtain their respective feature representations Fy = fo(I,) and Fy = fp(I;). In
the support branch, F is passed into the MPG module, which consists of Masked
Average Pooling (MAP) and Adaptive Local Prototype Generation (ALPG), to
generate multi-level prototypes using the foreground mask M. This process
produces a global prototype p? = MAP(Fy, M) and multiple local prototypes
pl = ALPG(F,, M,), where the number of local prototypes p! dynamically de-
pends on the size of foreground in M. In the query branch, Fy first computes
similarity with pJ to obtain an initial predicted mask Mg.. The ALPG module
is then applied to generate local prototype representations pfl = ALPG(F,, My.)
for the query image. Subsequently, p, pf], and pd are passed into the QLPE
module for prototype optimization and fusion, resulting in the final support
prototype p?'. Finally, the predicted mask MPr is obtained by computing the
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Fig. 2: (a) The overview of the proposed SPENet; (b) The architecture of ALPG
module; (¢) The architecture of QLPE module.

similarity between pJ' and F, i.e., Mpre = sim(pd', F,), where sim(-) denotes
cosine similarity.

2.2 Multi-level Prototype Generation (MPG)

Significant intra-class variation exists between support and query images [20,
15]. Existing methods [10, 20] tackle this by mining fine-grained prototypes, but
they often use a fixed number of local prototypes. These approaches overlook
the diverse sizes of lesions or organs, significantly impacting segmentation per-
formance. To address this limitation, we propose a Multi-level Prototype Gen-
eration (MPG) module that simultaneously generates a global prototype and an
adaptive number of local prototypes. The MPG module consists of two key com-
ponents: the Masked Average Pooling (MAP) for the generation of the global pro-
totype, and the Adaptive Local Prototypes Generation (ALPG) module for pro-
ducing the local prototypes. Given the support features Fy, € RE*"*% and the
corresponding foreground mask M, € R7T*W  the global prototype pJ € RE*!
via MAP can be derived as follows:

3, F(Cig) @ M)

Zi,j M; (i’ .7)
where ® represents the Hadamard product and the spatial size of the feature F
will be resized to match the size of M.

Inspired by [8], we introduce the ALPG module to generate an adaptive
number of local prototypes, as illustrated in Fig. 2(b). The support feature Fj

pd

(1)
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and the support mask M, are processed by Local Feature Generation (LFG) to
produce k local features. The LFG process begins by extracting the positions of
foreground pixels from M as peoor, then randomly selecting one as the initial
cluster center S7. Next, the algorithm identifies the point within the remaining
Peoor that is farthest from S7, designating it as So. This process continues until a
total of k center points are identified. Subsequently, the remaining points in peoor
are assigned to the nearest cluster centers, forming k local regions. According to
these local regions, the features F can be divided into k local features. Finally, an
average operation is performed on each local feature to obtain its corresponding
prototype:

py = {Avg(fi) | fi € LFG(F, My, k), i=1,2,... k} 2)

where Avg(-) represents the average pooling operation and LFG refers to the
local feature generation operation.

The number of local prototypes k is dynamically determined by the size of
the foreground in My, formulated as follows:

k = min (max meé?)J , 1) ,kmax> (3)

where sum(M;) denotes the total number of foreground pixels in My, Cs indi-
cates the number of pixels in each local region, k.« is the maximum allowable
number of local prototypes. Additionally, the max(-) function guarantees that
at least one local prototype is generated for extremely small targets, ensuring
all targets produce valid prototypes.

2.3 Query-guided Local Prototypes Enhancement (QLPE)

Existing methods directly match all local prototypes from the support image
with the query features, ignoring intra-class variations such as size, shape, and
appearance, which prevents achieving optimal results. For example, when the
support image shows a liver tumor and the query image depicts a normal liver,
not all local prototypes are beneficial. A straightforward solution is to calculate
the cosine similarity between the local prototypes of the support and query im-
ages and then re-weight them. However, this method independently assesses the
similarity between each pair of local prototypes, overlooking their relationships
with others, which leads to suboptimal results. To address this issue, we design
a Query-guided Local Prototype Enhancement module (QLPE) based on the
Optimal Transport algorithm, as shown in Fig. 2(c). In particular, we define
(1 — 5) as the cost matrix, where S € R™*™ is the similarity matrix between
pl and pfl, with m and n representing the number of local prototypes in p) and
pfl, respectively. The transport plan T € R™*" is obtained by optimizing the
following function:

m n

m%nZZTij (1= S(i,7)) +e- H(T) (4)

i=1 j=1
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where H(T) = - >1" | Z?Zl T;; log T;; represents the entropy of the transporta-
tion plan, promoting a uniform distribution of its elements, and € is the regular-
ization parameter, set empirically to 0.1.

The transport matrix 7T;; satisfies the constraints Z?Zl Tij = i, for all
ie{1,2,...,m}and >./" | T;; = v; for all j € {1,2,...,n}. The p; represents
the importance distribution of the i-th local prototype in pi, and v; represents
the importance distribution of the j-th local prototype in pfl. Moreover, u; and
vj satisty 30", gy = 1and 30 vy = 1.

Using the Sinkhorn algorithm [2] to optimize Eq. 4 produces the optimal
transport matrix 7", enabling the determination of the weights for each local
prototype in p.:

W* = sum(T* ® S, axis = 1) (5)

where ® represents the Hadamard product, and axis = 1 indicates summation
along the column dimension.

Finally, the local prototypes in p! are re-weighted using W* and averaged,
then fused with the global prototype pd of the support image to obtain the final
prototype representation pgl:

pd = p? + Avg(pl @ W*) (6)

3 Experiments

3.1 Datasets and Evaluation

We evaluate our proposed SPENet on three public medical datasets, includ-
ing Abd-MRI [6], Abd-CT [7], and Card-MRI [22]. Abd-MRI is from the
2019 ISBI Combined Healthy Abdominal Organ Segmentation (CHAOS) chal-
lenge, consisting of 20 abdominal 3D MRI scans. Abd-CT is from the 2015 MIC-
CAI Multi-Atlas Abdomen Labeling challenge, comprising 30 abdominal 3D CT
scans. Card-MRI is from the 2019 MICCAI Automatic Cardiac Chamber and
Myocardium Segmentation challenge, consisting of 35 clinical 3D cardiac MRI
scans.

We use the widely adopted Dice Similarity Coefficient (DSC) to evaluate
the performance of the segmentation model. Following previous work [10], we
employ two supervision settings in the experiment. In Setting I, test classes
may occur in the background region of training slices. For example, the liver
(training class) and spleen (test class) may appear in the same slice. Setting IT
is stricter and requires training and test classes to be entirely separate within
slices. Here, slices containing test classes are excluded during training, ensuring
the model does not encounter test classes beforehand. However, Setting II is not
feasible for the Card-MRI dataset, where all classes co-occur in one slice.

3.2 Implementation Details

To ensure methodological consistency and reproducibility, we adopt the following
implementation protocol. The backbone architecture employs a ResNet-101 [5]
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Table 1: Comparison results in DSC (%) on Abd-CT, Abd-MRI, and Card-MRI
datasets. The best results are highlighted in bold.

Methods

Abd-MRI

Abd-CT

Card-MRI

LK RK Spleen Liver Mean|

LK RK Spleen Liver Mean|

BP MYO RV Mean

ALPNet
Q-Net
CRAPNet
RPT
PAMI
DSPNet
Ours

Setting I

81.92 85.18 72.18 76.10 78.84
68.36 84.41 76.69 73.54 68.65
80.38 86.42 74.32 76.46 79.39
80.72 89.82 76.37 82.86 82.44
81.38 88.43 76.37 82.59 82.38
81.88 85.37 70.93 75.06 78.31
81.98 89.18 80.41 83.02 83.65

72.36 71.81 70.96 78.29 73.35
69.39 55.63 56.82 68.65 62.63
74.69 74.18 70.37 75.41 77.66
77.05 79.13 72.58 82.57 77.83
76.52 80.57 72.38 81.32 77.69
78.01 74.54 69.31 69.32 72.79
80.01 73.39 80.74 82.76 79.23

83.99 66.74 79.96 76.90
89.15 64.52 78.19 77.28
83.02 65.48 78.27 75.59
89.57 66.82 80.17 78.85
87.75 64.91 79.73 77.46
90.1569.9981.80 80.64

ALPNet
Q-Net
CRAPNet
RPT
PAMI
DSPNet
Ours

Setting IT

73.63 78.39 67.02 73.05 73.02
73.96 81.07 65.39 72.36 73.20
74.66 82.77 70.82 73.82 75.52
78.33 86.01 75.46 76.37 79.04
74.51 86.73 75.80 81.09 79.53
76.47 82.01 68.27 78.56 76.33
76.94 88.07 76.78 80.88 80.67

63.34 54.82 60.25 73.65 63.02
66.25 62.36 67.35 77.33 68.32
70.91 67.33 70.17 70.45 69.72
72.99 67.73 70.80 75.24 71.69
72.36 67.54 71.95 74.13 71.49
68.46 63.55 66.48 69.16 66.17
77.4072.21 81.07 84.42 78.77

network initialized with weights pre-trained on the MS-COCO dataset [9], serv-
ing as our foundational feature extractor. Following previous work [10], all 3D
medical scans are reformatted into 2D axial slices and resized to 256 x 256. The
proposed model is trained using an SGD optimizer with an initial learning rate
of le-3, a weight decay of 0.0005, and a momentum coefficient of 0.9. Consis-
tent with most current FSMIS methodologies [10, 20|, we adopt a 1-way-1-shot
learning protocol, set the batch size to 1, and train the model for 30k iterations.
We set kpqr and Cy in Eq. 3 to 24 and 50, respectively. To validate the efficacy
and generalizability of the proposed model, we perform 5-fold cross-validation
and report the mean segmentation result across all folds. The implementation
is carried out on a computational platform running Ubuntu 22.04, with Python
version 3.8.19, CUDA version 11.8, and powered by an RTX 4090 GPU, ensuring
efficient training and evaluation.

3.3 Comparison with State-of-the-art Methods

We compare the proposed SPENet with state-of-the-art methods, including
ALPNet [10], Q-Net [12], CRAPNet [3], RPT [20], PAMI [21], and DSPNet [14].
Abd-MRI and Abd-CT Datasets: The quantitative results presented in
Tab. 1 demonstrate the superior performance of SPENet on both the Abd-MRI
and Abd-CT datasets under setting I and setting II. To be specific, on the Abd-
MRI dataset, SPENet achieves mean DSC scores of 83.65% and 80.67% under
setting I and setting II, respectively, surpassing RPT by 1.21% under setting
I and PAMI by 1.14% under setting II. On the Abd-CT dataset, SPENet out-
performs the second-place method, RPT, by margins of 1.40% and 7.08% under
setting I and setting II, respectively. Card-MRI Dataset: Since all classes
are present in one slice of the Card-MRI dataset, only setting I is applicable.
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SPENet achieves the best results on the Card-MRI dataset. Specifically, our
method achieves a mean DSC of 80.64%, outperforming RPT and PAMI by
1.45% and 1.79%, respectively.

3.4 Ablation Study

We perform a series of ablation studies on Abd-MRI under setting I to verify
the effectiveness of each component in SPENet, as shown in Tab. 2. Baseline
refers to the model without the MPG and QLPE modules, while keeping all
other training parameters. MPG™ denotes the MPG module that generates a
global prototype and a fixed number of local prototypes, resulting in a 1.73%
improvement in mean DSC when integrated into the baseline. MPG can gener-
ate an adaptive number of local prototypes, which improves the mean DSC
by 2.47% when added to the baseline. When the baseline is equipped with both
the MPG and QLPE modules, it achieves a 3.53% increase in mean DSC over
the baseline. These results confirm the effectiveness of the key modules in our
proposed SPENet. Hyperpameter Evaluation: We also conduct experiments
with different k., in Eq. 3 to explore the impact of the number of local pro-
totypes on model performance. Fig. 3 shows that model performance improves
with increasing k,,q: when kpax < 24, but slightly declines thereafter while still
outperforming other methods. We believe this phenomenon occurs because di-
viding into too many local regions can compromise semantic information, leading
to inconsistent matching [17]. Therefore, we set ky,q. = 24 in the experiment.

Table 2: Ablation results of key com-
ponents on the Abd-MRI dataset.

—8— Mean DSC

mean DSC (%)

Baseline MPG* MPG QLPE DSC Improve Nulnber of Kyax
80.12 . 23 16 20 24 28 »
v 81.85 +1.73
v 82.59 4247 Fig.3: Analysis of the maximum
v v 8365 +3.53
number of local prototypes.

ENENENEN

4 Conclusion

In this paper, we introduce the Self-Guided Prototype Enhancement Network
(SPENet) to address the challenge of intra-class variation in FSMIS. SPENet
comprises two key modules: the Multi-level Prototype Generation (MPG) mod-
ule and the Query-guided Local Prototype Enhancement (QLPE) module. The
MPG module enables multi-granularity measurement by simultaneously gener-
ating a global prototype and an adaptive number of local prototypes. The global
prototype preserves semantic information, while the local prototypes effectively



SPENet 9

capture subtle variations between the support and query images. Complement-
ing this, the QLPE module aims to mitigate the interference of detrimental
local prototypes in the support image through an optimal transport algorithm,
thereby further reducing intra-class variation. Extensive experiments conducted
on three public medical image segmentation datasets demonstrate the significant
advantages of SPENet, highlighting its superior performance.
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