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Abstract. In self-supervised pre-training, learning consistent and hi-
erarchical representations that capture relationships among anatomi-
cal semantics holds promise for enhancing the performance and inter-
pretability of downstream tasks. However, the representations learned
by existing methods are vulnerable to scale variations, which manifests
as inconsistency on some scales and misjudgments of hierarchy. There-
fore, we propose a scale-robust anatomical representation learning frame-
work with self-supervision, which incorporates contrastive learning with
our newly proposed pretext tasks: location-scale prediction(LSP) and
decomposition prediction(DP). Our method addresses the vulnerability
from three aspects: 1) It uses multi-scale patches as inputs to embrace
diverse anatomical semantics in pre-training. 2) LSP promotes consis-
tency at multi-scales by enhancing the model’s sensitivity to scale and
resolving representation conflicts caused by multi-scale inputs. 3) DP
eliminates hierarchy misjudgments by producing hierarchical represen-
tations for anatomies and their constituent parts that better balance
the similarity and discriminability. Evaluations across six chest X-ray
datasets demonstrate that the representations learned by our method
are consistent and hierarchical at multi-scales and have great transfer-
ring ability to various downstream tasks. The code is publicly available
at https://github.com/SurongChu/SRHRS.

Keywords: Self-supervised learning - consistent - hierarchical represen-
tations - anatomical semantics - pre-training.
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1 Introduction

For medical images with fixed anatomical structures, such as Chest X-Rays
(CXRs), learning anatomical representations through Self-Supervised Pre-training
(SSP) holds promise to enhance the performance and interpretability of down-
stream tasks by facilitating the transfer of anatomical knowledge [25, 10, 7]. Un-
like traditional representations disassociated with anatomical semantics [18, 28,
26, 24|, anatomical representations distinguish themselves by reflecting relation-
ships between anatomical structures. Although the definitions of anatomical rep-
resentations have evolved from consistent to hierarchical, they invariably face
challenges posed by multi-scale anatomical semantics, as shown in Fig.1.
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Fig. 1. Challenges to consistent and hierarchical representations caused by multi-scale
anatomical semantics.

Early studies [10, 7,27, 5] believed that anatomical representations should be
consistent, where identical anatomical semantics cluster together in the repre-
sentation space. However, due to fixed-scale inputs during pre-training, these
representations are vulnerable to scale variations, resulting in inconsistent rep-
resentations at some scales, as shown in Fig.1(a).

Recent studies [12,22] argued that anatomical representations should be hi-
erarchical to reflect the inherent hierarchies among anatomical semantics, such
as lungs (which can be divided into left and right lungs, each further subdivided
into lobes), ribs, and vessels. Hierarchy, grounded in consistency, necessitates
representations to be consistent at multi-scales and requires the representations
of anatomical structures show appropriate similarity if one structure is a part of
another. Existing methods [12,22] learned hierarchical representations through
coarse-to-fine staged training and bidirectional agreement prediction between
anatomical semantics and their constituent parts. However, despite these efforts,
the inconsistencies as shown in Fig.1(a) still exist due to the limited diversity
of anatomical semantics in their staged training. Furthermore, they encounter a
new challenge: misjudgments of hierarchy with similar semantics at multi-scales,
as shown in Fig.1(b). This occurs because their excessive agreement constraints
on patches and their constituent parts overly encourage similarity but compro-
mise discriminability of representations.

To address the challenges illustrated in Fig.1, we propose two new pretext
tasks: Location-Scale Prediction (LSP) and Decomposition Prediction (DP).
They are based on the following observations: despite individual variations across
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images, anatomies exhibit stable global positions, scales, and invariant relative
positions. LSP promotes consistency across various scales by predicting the sta-
ble global locations and scales of randomly selected anatomies in CXRs. Al-
though straightforward, LSP fulfills its role by mitigating representation conflicts
caused by diverse inputs and enhancing scale sensitivity. DP, on the other hand,
leverages the invariant relative position among anatomies to address misjudg-
ments of hierarchy. Specifically, it performs identical decompositions on input
patches and their corresponding feature maps and encourages agreement on the
decomposed parts of the same locations, thereby better balancing the similarity
and discriminability of representations between large anatomical structures and
their constituent parts. By integrating these two tasks with Contrastive Learn-
ing (CL), we have developed a Scale-Robust Hierarchical Representation learning
framework with Self-supervision(SRHRS). It streamlines the staged training pro-
cess into an end-to-end workflow and embraces a wider range of diverse inputs.

Evaluations across six CXR datasets demonstrate that the representations
learned by our SRHRS are consistent and hierarchical at multi-scales and have
great transferring ability. Ablation experiments show the interactions among
SRHRS’s components and the impact of diverse inputs and training manners.
Besides, we designed a new experiment, "Finding Parent", which provides quan-
titative metrics for evaluating the hierarchy of representations.

2 Method

Our SRHRS is built on CL, taking a teacher-student network [6] with multi-
scale patches as inputs, see Fig.2(a). A local patch x, cropped from image I with
location p and scale s, transformed by 7 to get two views x’ and z”’; and then
fed into the teacher (Fy,) and student encoder (Ep,) to obtain feature maps
Fr = Ey,(2'), Fs = Eg,(2"). These feature maps go through the teacher (G¢,.)
and student projector (G¢y) to obtain the projected vectors zp = G, (Fr),
zs = G¢g(Fs). CL learns discriminative features invariant to transformations
by minimizing the distance (dist(-)) between the projected zy and zg with loss
Lo = dist(zr, zs). However, simply adopting multi-scale inputs can lead to
representation conflicts, thus necessitating the integration of LSP.

2.1 Location-scale prediction(LSP)

To learn consistent representations at multi-scales, LSP predicts the position p
and scale s of local patch x. A prediction head H,,, is added after the projector
G¢, in the student branch (see Fig.2(b)). The LSP loss is the distance between
the predicted values (p, §) and the ground truth (p, s), Lrsp = dist((p, §), (p, s)).
Location prediction enhances consistency by leveraging the location stability of
anatomies, while scale prediction aids in differentiating semantics at the same
locations, as CXR anatomical semantics are sensitive to scale variations. Their
combination effectively resolves representation conflicts arising from multi-scale
inputs, enabling the acquisition of consistent representations at various scales. In
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(b) Location-scale prediction (LSP)
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Fig. 2. The architecture of SRHRS, which comprises three tasks: CL, LSP, and DP.
CL is a dual-branch contrastive learning framework that takes multi-scale patches as
inputs. LSP mitigates representation conflicts and enhances consistency by predicting
the locations and scales of input patches. DP fosters hierarchy by strengthening the
coherence between corresponding decomposed parts in both feature and image space.

(c¢) Decomposition prediction (DP)

experiments, scale s is selected from set {0.2,0.4,0.6,0.8,1.0} and location p is
selected from set {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1.0}, both with a tolerance
of +0.05 to enhance resilience against individual divergence [3,17,11, 16].

2.2 Decomposition prediction (DP)

To address the misjudgments of hierarchy, DP performs identical decomposi-
tions in both feature and image space to learn hierarchical representations (see
Fig.2(c)): In feature space, F’ is decomposed into N equal non-overlapping
sub-feature maps {Fy, Fy, ..., Fx}, which are then linearly interpolated to pro-
duce feature maps {Di, Ds,..., Dy} with the same size as F'. Each D; (i =
1,2,...,N) is further projected by G¢, to generate a feature vector k;. Collec-
tively, these N feature vectors form the key set K = {kq, ko, ..., ky}. Similarly,
in image space, x is decomposed into N parts {p1,p2,...,pn}. Each p;, trans-
formed by 7T, passes through encoder Fy, and projector G, ultimately outputs
query vector g;. The cosine similarities between g; and all keys are recorded in
vector .S;. The ground truth for S; is the one-hot vector G'T'; highlighting k; be-
cause the corresponding image regions of ¢; and k; are largely overlapped. The
prediction loss of g; is the distance between S; and GT;, L, = dist(S;, GT;).
The DP loss for patch z is the average of the losses across N queries: Lpp =
% Zil ¢ p- In practice, N is set to 4. When N = 4, the decomposition only
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comprises two basic divisions: one horizontal and one vertical. DP imposes lo-
cal agreement constraints between a patch and its constituent parts to prevent
over-similar representations, thereby preserving discriminability. These represen-
tations, which balance similarity and discriminability, can effectively eliminate
misjudgments of hierarchy.

2.3 Overall Structure

As shown in Fig.2, our SRHRS consists of three tasks: CL, LSP and DP. The
total loss of the SRHRS is the weighted sum of the three tasks’ losses: £ =
Lo+ ArspLrsp+AppLpp, where Leor, Lisp, and Lpp denote the loss of CL,
LSP, and DP; A sp and App denote the weights of Ly gp and Lpp, respectively.
All these tasks share a dual-branch teacher-student network. The student branch
updates via gradient backpropagation, while the teacher updates via exponential
moving average (EMA) from the student. After pre-training, only the teacher’s
encoder is transferred to downstream tasks.

3 Experiments and Results

In this section, we introduce the experiment details and results. The results
include: analyses on consistency and hierarchy of representations; evaluation of
transferring ability; and ablation studies on the effects of SRHRS’s components,
diverse inputs and training manners.

3.1 Pre-training settings

The pre-training utilized 67K images from the official training set of Chest X-
ray14 [23], while all the remaining images were used for downstream task TDC.
Images from a single patient belong exclusively to one set to prevent data leakage.
This principle has also been applied to the dataset division for all downstream
tasks. The encoders Ey, and Ey, take ResNet-50 [9] as backbones, while G,
G¢p and H,,, are composed of two-layer multilayer perceptron (MLP) networks.
The parameters of Ey,. and G¢,. are updated by Ey, and G¢, using EMA with a
decay rate of 0.99. The weights in the total loss function were set to the optimal
combination where Apgp = 2, App = 1. The dist(-)s in Lor, Lrsp, Lpp take
cross entropy loss. The transformation set 7 includes random flipping, rotation,
color jittering, and Gaussian blur, followed by resizing to 224 x 224. Our models
are implemented in PyTorch on two NVIDIA A5000 GPUs with 24 GB memory
for each, optimized by Adam with a learning rate of 0.0001 and a weight decay
of 1e-6. The pre-training takes 300 epochs with early stopping.

3.2 Downstream task settings

We evaluated our method on six downstream tasks, including: (1) a multi-label
thorax disease classification (TDC) on a subset of Chest X-rayl4; (2) a multi-
class pneumoconiosis stages classification (PSC) on dataset SXPCO [5]; (3) a
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multi-class COVID-19 classification (CVC) on dataset COVQU [4,19]; (4) a
binary pediatric pneumonia classification (PPC) on dataset GZCP [14]; (5) three
independent binary anatomical structure segmentation (ASS) on dataset NIH-
Mon [13, 20, 2]; (6) a binary pneumothorax segmentation (PTS) on dataset SIIM-
ACR [1]. We follow the official dataset split if provided; if not, we split the
dataset into training, validation, and test sets at a 6:2:2 ratio. In TDC, labels
are represented by 14-bit binary vectors, with all zeros signifying "no findings".

For a comprehensive evaluation, we compared our approach with training
from scratch (Scratch), the fully-supervised pre-trained model on ImageNet (Im-
ageNet), and a wide range of self-supervised methods, including: (1) classic con-
trastive learning methods: Moco v2 [8] and BYOL [6]; (2) advanced methods for
consistent representations: TransVW [7] and GVSL [10]; (3) advanced methods
for hierarchical representations: Adam v2 [22]. To ensure a fair comparison, all
methods were pre-trained with the same dataset and backbone as SRHRS. Only
the pre-trained encoders were used for downstream tasks. A two-layer MLP is
added as classification head, a decoder is added as segmentation head to form
a U-Net [21], both of which were randomly initialized. Input patches were ran-
domly cropped with a scale of [0.7, 1] and performed the same transformations
T. Performance was evaluated using mean Area Under the Curve (AUC) for
classification and mean Dice coefficient (DSC) for segmentation. We ran each
task 10 times and reported the average.

3.3 Representation analysis
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Consistency of representations We compared the five pre-training meth-
ods against ours to evaluate the consistency of representations. Firstly, 500 im-
ages in the Chest X-rayl4’s test set were randomly selected and annotated 7
anatomical landmarks by a professional physician (see Fig.3(a)). Subsequently,
patches centered on these landmarks were cropped and fed into the pre-trained
models to extract representations. Then these representations were visualized by
t-SNE [15]. As shown in Fig.3(b), with patch size 224 x 224, the representations
learned by Adam v2 and our SRHRS keep identical anatomical semantics clus-
tered. When the patch size is reduced to 112 x 112 (see Fig.3(c)), Adam v2 tends
to confuse anatomical structures with similar textures (e.g. left rib 5 and right
rib 6) and over-dividing those with diverse appearances (e.g. left clavicle and
right diaphragm).In contrast, SRHRS excels at distinguishing different anatomi-
cal structures. This demonstrates that SRHRS learns consistent representations
for anatomical semantics at various scales.

Hierarchy of representations We designed an experiment "finding par-
ent" to evaluate the hierarchy of representations. Firstly, 1000 CXRs were ran-
domly selected from Chest X-rayl4’s test set and divided into 250 batches. On
each image, a group of nested patches were cropped as "parents" (see Fig.4 (a)),
with sizes of 0.6 H x 0.3H, 0.4H x 0.2H, and 0.2H x 0.1H, where H is the equal
length and width of original CXRs. Next, parents were divided equally along its
longer edge into child patches. Subsequently, all these patches were input into
pre-trained models to extract representations. Finally, each child patch tried
to find its parent by selecting the one with the highest cosine similarity to its
representation among all the candidates in a batch.

As shown in Fig.4(b), our SRHRS reaches the highest matching accuracy
(MAcc), outperforming Adam v2 by over 10%. The similarity distributions of
the correct matches and all candidate child-parent pairs are shown in Fig.4(c).
SRHRS’s similarity distribution for correct matches is lower than Adam v2’s,
while the distribution for all candidate pairs is more dispersed. This indicates
SRHRS’s representations create a large disparity between matched and mis-
matched pairs, and avoid excessive similarity between parent and child patches.
When comparing MAcc on patches of different scales (see Fig.4(d)), SRHRS out-
performs Adam v2 across all scales, with a significant lead on small patches. In
summary, SRHRS’s representations are hierarchical at various scales and avoid
degrading its discriminative power.

3.4 Transferring learning

We fine-tuned the pre-trained models on six downstream tasks using varying
amounts of labeled data to demonstrate their transferring ability (see Tab.1).
SRHRS topped all six tasks, not only with full training data but also with limited
labeled data. This indicates that SRHRS’s consistent and hierarchical represen-
tations empower its transferring ability and hold great potential in addressing
annotation scarcity.
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Table 1. The fine-tuning evaluations on downstream tasks using full training data and
30% training data.

Methods full training data 30% training data

TDC PSC CVC PPC ASS PTS |TDC PSC CVC PPC ASS PTS
AUC% AUC% AUC% AUC% DSC% DSC%|AUC% AUC% AUC% AUC% DSC% DSC%

Scratch |73.83 80.20 95.62 94.63 89.53 64.12|53.21 56.40 67.54 66.07 50.42 32.37
ImageNet|75.84 82.03 96.32 94.77 90.25 67.94(56.99 64.17 70.77 72.67 61.22 40.61
Moco v2 |74.05 81.72 94.82 94.72 90.35 65.47|54.67 62.18 68.23 70.43 58.29 34.25
BYOL 76.10 81.45 96.33 94.64 89.88 66.24|56.48 63.40 69.19 68.59 60.34 35.83
TransVW|77.93 85.61 97.03 96.68 90.23 67.42|62.72 69.68 77.81 78.12 65.37 45.29
GVSL 76.39 85.07 96.48 95.32 89.38 66.35|57.25 66.34 72.47 74.39 62.08 46.10
Adam v2 |78.23 84.78 96.92 96.32 91.04 69.02|64.27 70.82 79.24 78.93 68.41 47.32
SRHRS |82.4289.4398.3297.8592.7773.35/68.57 73.16 82.93 83.28 69.28 50.25

3.5 Ablation study

Effects of the components We use the fine-tuning results to evaluate the effect
of each SRHRS’s components. As shown in Tab.2, CL fails to outperform BYOL
in Tab.1, suggesting that multi-scale inputs alone cannot enhance performance
due to severe representation conflicts. LSP plays a pivotal role in mitigating these
conflicts and learning consistent representations. Furthermore, DP can only fulfill
its role effectively when combined with LSP, indicating that consistency is the
cornerstone of hierarchy.

Effects of diverse inputs and training manners In Tab.3, we compared
patches cropped at fixed (F') or random (R) locations from three or five different
scales to show the effect of diverse inputs; and compared end-to-end (E) training
with staged (S) one to show the effect of training manners. From bottom to top,
we gradually degraded SRHRS (the fourth row) to a simulated staged training
approach like [22] (the first row) by reducing the diversity of input patches and
flexibility of training manners. To evaluate the effects of these strategies, we uti-
lized the representations to perform the "finding parent" task and reported the
MAccs, as this metric directly reflects the hierarchy and consistency of represen-
tations. The results indicate that our SRHRS, with diverse inputs and end-to-end
training, yields improved representations.

4 Conclusions

We proposed SRHRS, a new SSP framework to address the vulnerability of
anatomical representations arising from multi-scale semantics, manifesting as
inconsistency at some scales and misjudgments of hierarchy. With our newly
proposed pretext tasks LSP and DP, SRHRS successfully addresses this issue
by embracing diverse inputs, enhancing scale sensitivity, and balancing the sim-
ilarity and discriminability of hierarchical representations. Experiments demon-
strate that our representations exhibit robust consistency and hierarchy at multi-
scales and possess powerful transferring ability to various application scenarios.
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Table 3. Effect of input
Table 2. Fine-tuning evaluation results demon- Locations (Fixed vs. Random)
strate the effects of SRHRS’s components. and Scales and Training man-

ners (Staged vs. End-to-End) on
TDC PSC CVC PPC ASS PTS representations

CL LSP DP

AUC% AUC% AUC% AUC% DSC% DSC%
Vi 73.72 80.75 94.53 94.34 87.68 65.39 Loc  Scales  TrainMAcc
v v 80.23 86.26 97.13 96.37 91.24 7T1.15 F  [0.25,05,]] S 0.84
i v 74.84 81.14 95.75 95.07 88.49 66.84 R  [0.25,0.51] S 0.87
Vv v v 8242 89.43 98.32 97.85 92.77 73.35 R [0.25,0.51] E 0.88

R [0.2,0.4,0.6,0.8,1] E 0.93

Furthermore, SRHRS holds promise to learn consistent and hierarchical repre-
sentations for other structured medical images, such as CT and MRI.
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