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Abstract. Given the global prevalence and high mortality of coronary
artery disease (CAD), automated CAD diagnosis should evolve toward
personalized methods to maximize its clinical value. However, existing
techniques have been limited to artery-level prediction, lacking patient-
level causality and failing to effectively account for individual patient con-
founders. In this work, for the first time, we introduce a Causal-Holistic
Adaptive Intervention Network (CAIN) that tailors personalized CAD
diagnosis for individual patients. CAIN generates semantic representa-
tions at both the patient and artery dual-levels for each case, constructing
a holistic causal graph that captures individual-specific characteristics.
It then implements adaptive causal intervention based on the patient’s
specific condition, using dynamically updated and differentiated inter-
vention variables. Experimental results on CCTA scans from 602 pa-
tients and 6,830 coronary branches across three clinical centers show
that CAIN outperforms state-of-the-art methods, offering personalized
clinical guidance. The source code is available at (https://github.com/
PerceptionComputingLab/CAIN).

Keywords: Coronary CT Angiography (CCTA) · Coronary artery dis-
ease · Causal intervention · Personalized diagnosis.

1 Introduction

Coronary Artery Disease (CAD) has long been a leading cause of morbidity and
mortality worldwide, as atherosclerosis narrows the coronary artery lumen, lead-
ing to reduced blood flow to the myocardium. [12] Recent clinical studies indicate
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a rising prevalence of CAD, which has led to a growing demand for automated
diagnostics utilizing Coronary CT Angiography (CCTA). [14] To maximize clini-
cal applicability, automated CAD diagnosis should evolve from generalized, rigid
assessments to personalized analyses [11], ensuring that clinical guidance aligns
with each individual’s unique condition.

Fig. 1. Our CAIN applies adaptive causal intervention (b) within each patient’s holistic
causal graph to overcome the limitations (a) of previous artery-level methods.

Current automated CAD diagnosis technology has made significant progress
[1],[8], largely driven by deep learning. However, existing methods focus primarily
on artery-level predictions and lack personalized analysis tailored to individual
patients. Zreik et al. [20] introduced a method using Curved Planar Reforma-
tion (CPR), integrating convolutional and recurrent neural networks to classify
image cubes from coronary segments. Denzinger et al. [5] and Ma et al. [9] re-
fined this method by integrating gated recurrent units and Transformer models
to analyze spatial correlations within the segments. More recently, Zhang et al.
[19], Van et al. [16], and Ma et al. [10] have proposed advanced techniques with
diverse research focuses, improving the lesion analysis through Faster R-CNN,
surface mesh inference, and data-efficient learning. Despite these advancements,
all the above-mentioned methods use coronary segments as the largest input
unit, limiting predictions to the artery-level. Only a few studies [20],[16] have
attempted simple statistical aggregation of artery-level results to approximate
patient-level verification. As a result, relying on branch segments as input pre-
vents these methods from capturing patient-level characteristics and providing
truly personalized diagnoses.

As illustrated in the causal graph (Fig.1a) of the automated CAD diagno-
sis process, the limitations of previous artery-level methods in the context of
personalized diagnosis are reflected in the following two aspects: (1) Ignoring
the imaging signals of the patient’s coronary tree and relying on CPR-based
artery-level predictions for each coronary segment leads to the absence of the
patient-level prediction Yp and its corresponding causal link in the causal graph.
Given that clinical standards [4] explicitly define the crucial role of the Coronary
Artery Disease Reporting & Data System (CAD-RADS) assessment in guiding
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patient treatment plans, the absence of such causal relationships significantly
reduces the clinical applicability of related technologies. (2) In artery-level pre-
dictions yi

a based on imaging signals xi, false associations, such as di → xi

and di → yi
a, are introduced by confounders di disrupt the causality xi → yi

a,
potentially resulting in misdiagnosis or missed diagnosis. Moreover, this error
is further amplified during the statistical aggregation process used to approxi-
mate the patient-level prediction Yp. Recent clinical studies have identified both
external and internal factors as potential confounders. External factors include
data heterogeneity caused by variations in scanning instruments and imaging pa-
rameters [17], while internal factors include lesion-irrelevant information such as
blurred boundaries or imaging artifacts [2]. Given these limitations, the causality
in the previous coronary artery-level CAD diagnostic process can be expressed
as:

P (yi
a|xi) = P (yi

a|xi,di)P (di|xi) i ∈ {1, 2, . . . , S} (1)
where S denotes the number of coronary branches in the patient’s coronary tree.

In this work, we propose a Causal-holistic Adaptive Intervention Network
(CAIN) for tailoring personalized CAD diagnosis to individual patients. To ad-
dress the limitations of artery-level methods, CAIN constructs a holistic causal
graph aligning with individual conditions that includes Yp, and describes the
whole coronary tree to facilitate adaptive causal intervention for the current
patient, as shown in Fig.1b. Specifically, the dual-level semantic representation,
which integrates patient-level CCTA scans and artery-level CPR volumes, sup-
ports the construction of a holistic causal graph. Next, the confounders for adap-
tive causal intervention are retrieved from a dynamically updated bank, enabling
personalized diagnoses at both the patient and artery levels. Our main contribu-
tions are outlined as follows: (1) CAIN introduces, for the first time, a personal-
ized solution for CAD diagnosis in individual patients through the construction
of a holistic causal graph and adaptive causal intervention. (2) Comprehensive
experiments based on a dataset of 602 patients, 6,830 branches from three clinical
centers demonstrate that CAIN outperforms State-Of-The-Art (SOTA) meth-
ods, particularly at the patient level.

2 Method

The personalized CAD diagnostic network, CAIN, consists of two modules: dual-
level semantic representation and dynamically updated intervention, as shown
in Fig.2. These modules apply the intervention to the confounders D within the
causal graph (Fig.1b) which incorporates patient-level prediction Yp:

P (Yp|do(X)) =
∑

xi

∑
yi
a

∑
diP (Yp|X = xi,Ya = yi

a,D = di)

P (Ya|X = xi)P (D = di) i ∈ {1, 2, . . . , S}
(2)

2.1 Dual-level semantic representation

The module comprehensively represents the imaging signals of the individual
patient at both the artery and patient levels, providing a personalized semantic
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foundation for constructing the holistic causal graph. Specifically, the patient-
level CCTA scans xcta and the artery-level CPR volumes xi

cpr i ∈ [1, S] are
based on the coronary tree as input, where S denotes the number of branches.
According to clinical research statistics [6], representing the 16 major coronary
branches most strongly associated with CAD, including RCA-p/m/d, L-PDA,
LM, LAD-p/m/d, D-1/2, LCX-p/d, OM, L-PLB, R-PDA, and R-PLB.

The patient-level representation captures the overall condition of the coro-
nary tree and provides global features for characterizing individual patients. To
obtain this representation, the patient-level feature extractor, Fcta, partitions
the 3D input xcta into a set of cubic patches. These patches are then processed
through a series of Transformer encoders employing the shift window [7] mech-
anism. Each encoder performs cascaded multi-head attention calculations, with
cyclic patch shifting applied or not. Following each encoder, a patch merging
operation is applied to downsample features. The extracted features are then
transformed into a patient embedding, ep ∈ R32×512, using pointwise convolu-
tion and projection. The artery-level representation details the vascular lumen
of each branch, extracting local features from all branches to represent the coro-
nary tree. To obtain this representation, the artery-level feature extractor, Fcpr,
extracts artery embeddings for different branches from their corresponding CPR
volumes. xi

cpr i ∈ [1, S] corresponds to each artery branch and undergoes multi-
scale lumen information extraction through multiple convolutional blocks with
3D max-pooling layers, enabling comprehensive analysis of branch-specific con-
ditions and providing an artery embedding eia i ∈ [1, S] for each coronary branch.

To establish associations among multiple artery branches in the latent vari-
able space and capture inter-branch relationships, artery embeddings from differ-
ent branches, [e1a, · · · , eSa ], are processed using a series of Transformer encoders
E itr (i ∈ [1, k1]) for branch association computation. Next, the query embeddings
eiqry ∈ RQ×512 i ∈ [1, S], which are randomly initialized and correspond to the
branches, interact with the respective embeddings through a series of Trans-
former decoders Di

tr (i ∈ [1, k2]), to adaptively integrate multi-branch informa-
tion into eiqry. This branch latent association reduces information redundancy
while providing prior signals for causal interventions.

2.2 Dynamically updated intervention

The module continuously updates the confounder bank based on differentiated
samples from individual patients, enabling adaptive causal interventions for per-
sonalized diagnoses. To ensure intervention variables in the confounder bank
B ∈ RM×512 accurately represent each patient’s physiological characteristics, it
is constructed through a dynamic update procedure based on diverse patient-
level samples during training. Here, M denotes the maximum capacity of the
confounder bank for storing vectors. Specifically, the feature vectors vF s, ob-
tained through dimensionality reduction from the dual-level embeddings ep and
eia (i ∈ [1, S]) of the patient samples, are sequentially enqueued into the bank
B. If the number of confounder variables in B has not yet reached the storage
limit M , vF is pushed into B. Otherwise, the intervention variable vI in B that
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Fig. 2. The overview of CAIN: Dual-level semantic representation and dynamically up-
dated intervention implement the adaptive causal intervention on the holistic causality.

has the highest cosine similarity to vF is identified. The two are then aggregated
and stored in the place of vI in B, which is defined as:

ṽI = βvI + (1− β)vF (3)

where β is a hyperparameter regulating the aggregation, and ṽI is the aggregated
variable that is subsequently written back into B. This updating strategy allows
the confounder bank to capture sample diversity within limited storage space,
thereby ensuring adaptive causal interventions across patient variations.

To design adaptive intervention based on the imaging features of the entire
coronary tree, we select intervention variables from all S branches to ensure a
comprehensive description of the patient’s confounders. Given the causal model
P (Y |do(X)), the modeling process

∑
d(P (yl|x,d))p(d) for predicting the l-label

yc based on information x can be rewritten as Ed[Softmax(fd(x,d))] under
Softmax-based probability prediction. According to the Normalized Weighted
Geometric Mean (NWGM) [18], the expected value after causal modeling is
given by:

Ed[Softmax(fd(x,d))]
NWGM
≈ Softmax(Ed[fd(x,d)]) (4)

Thus, causal intervention can be transformed into a probabilistic prediction
within a context that accounts for confounders. In the process of CAD diagno-
sis, the intervention medium mI ∈ R32×512, which represents the confounders,
is obtained through confounder reading. This medium is formed by concatenat-
ing the intervention variables that exhibit the highest cosine similarity to ep and
eia (i ∈ [1, S]) from B, followed by projection. The query embedding eiq (i ∈ [1, S])
for each coronary branch, along with the medium mI , is used to compute the
Query, Key, and V alue through linear mapping. Attention mechanism-based
distributional computations capture the discrepancy between image represen-
tation and confounders, thereby mitigating the interference of confounders in
the CAD diagnosis. Following causal intervention, eiq of each branch is fed into
the artery-level prediction head with parallel regression and classification heads
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for lesion localization, and stenosis and plaque characterization. All eiq are con-
catenated and integrated with the patient embedding ep through a series of
cross-attention calculations Ciat (i ∈ [1, c]), integrating the dual-level semantics
to enable the patient-level CAD-RADS classification.

The objective function of CAIN consists of a lesion localization loss Lloc and
a lesion characterization loss Lchar, which corresponds to each i-branch, as well
as a CAD-RADS classification loss:

LCAIN =
∑S

i=1(L
i
loc + Li

char)/S −
∑

j y
j
radslog(p

j
rads) (5)

where yrads and prads are one-hot encoded vectors for the CAD-RADS labels
and the class probability of CAD-RADS predictions, respectively. The definitions
of Lloc and Lchar are defined as follows:

Lloc =
∑Q

j=1[− log p̂%̂(j)(cj) + 1{cj 6=∅}Lroi]

s.t., %̂ = argmin
%∈SQ

∑Q
j [−1{cj 6=∅}p̂%(j)(cj) + 1{cj 6=∅}Lroi]

Lchar = −1/2(
∑

j y
j
stenlog(p

j
sten) +

∑
k y

k
plqlog(p

k
plq))

(6)

where % ∈ SQ is the permutation that minimizes the cost using Hungarian
matching [3], p̂%(j)(cj) denotes the probability of category label cj , and Lroi is
the RoI loss [13]; ysten,plq and psten,plq are one-hot encoded vectors for the plaque
and stenosis labels and the class probability for their predictions, respectively.

3 Experiment

Dataset. A total of 602 CCTA scans from different patients were retrospectively
collected from three clinical centers (352/32/218). 6,830 coronary branch CPR
volumes (4,039/320/2,471) were reconstructed, covering the LM, LAD, LCX, and
RCA branches for all patients. To account for individual patient variability, any
missing branches were replaced with volumes set to -1024 HU. To enhance ex-
perimental stability, CCTA scans underwent geometric augmentation, and CPR
reconstruction included random centerline shifts of up to three voxels.

Implementation details. The inputs to CAIN, xcta and CPR volumes xcpr,
were initialized to 128×128×128 and 256×64×64, respectively. Fcta and Fcpr

adopt an identical encoding architecture to that of [15] and [10], respectively.
The quantities k1, k2, and c, corresponding to Etr, Dtr, and Cat, were each set
to 4. The query number Q in eqry was set to 16, and the maximum capacity M
of B was set to 1000. The hyperparameter β of the confounding writing was set
to 0.65. The model weights achieving the best validation performance after 200
epochs were used for testing.

Evaluation metrics. In accordance with clinical standards and previous
studies, evaluations were performed at both the artery and patient levels, in-
corporating the individual CAD-RADS level as well as the stenosis and plaque
characteristics of each artery segment. The evaluation metrics adopted from the
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Fig. 3. Qualitative comparison with SOTAs in lesion localization and characterization.

SOTA methods included accuracy (ACC), precision (Prec), recall, F1 score, neg-
ative predictive value (NPV), and specificity (Spec), calculated based on the con-
fusion matrix. To assess the cross-center diagnostic capability, data from Center
1 were used for training, Center 2 for validation, and Center 3 for testing.

3.1 Experimental results

Comparison with SOTAs. To evaluate the performance of CAIN for person-
alized CAD diagnosis, we compared it with SOTAs for automated CAD diag-
nosis. In the study by Denzinger et al. [5], plaque was not considered, so only
stenosis-related metrics were evaluated for 2D-RCNN+PT. As shown in Tab.1,
the quantitative results show that CAIN significantly outperforms SOTAs across
all tasks at both the artery and patient levels, with t-test p-values all below 0.05.
At the artery-level, CAIN accurately localizes lesions and characterizes stenosis
and plaque in each coronary branch. At the patient level, it reliably predicts the
CAD-RADS level, thus assessing the risk of disease for each individual patient.
In the evaluations above, experiments with dataset splits based on clinical cen-
ters also showed that CAIN can handle imaging variations caused by different
imaging parameters, further proving its cross-center generalization capability
and clinical practicality. Additionally, CAIN shows superior performance in Pre-
cision, Recall, and F1 scores, emphasizing its ability to effectively reduce both
misdiagnosis and missed diagnoses, thereby optimizing the allocation of medical
resources through early screening. As shown in Fig.3, qualitative comparisons
with the latest SOTAs indicate that CAIN can accurately localize lesions within
coronary segments and provide precise assessments of stenosis and plaque com-
position. These representative cases illustrate the diversity of the vessels and
demonstrate CAIN’s robustness in handling individual patient variations.

Ablation analysis. To validate the effectiveness of patient-level configura-
tions, we removed Fcpr, Ciat (i ∈ [1, c]), and patient-level prediction, replacing
them with the branch statistical aggregation from previous research, applied to
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Table 1. Quantitative comparison with SOTAs at the artery level and patient level.

Stenosis characterization at the artery-level
Method ACC Prec Recall F1 NPV Spec

3D-RCNN [20] 0.785 (<0.001) 0.682 (±0.058) 0.711 (±0.018) 0.685 (±0.044) 0.955 (<0.001) 0.956 (<0.001)
2D-RCNN+PT. [5] 0.797 (<0.001) 0.702 (±0.039) 0.728 (±0.019) 0.712 (±0.029) 0.957 (<0.001) 0.958 (<0.001)
Coro. RCNN [19] 0.824 (<0.001) 0.732 (±0.047) 0.761 (±0.019) 0.741 (±0.035) 0.962 (<0.001) 0.963 (<0.001)
Mesh-Infer. [16] 0.852 (<0.001) 0.780 (±0.026) 0.806 (±0.012) 0.791 (±0.019) 0.968 (<0.001) 0.969 (<0.001)
SC-Net [10] 0.872 (<0.001) 0.798 (±0.025) 0.777 (±0.039) 0.786 (±0.032) 0.974 (<0.001) 0.973 (<0.001)
CAIN (Ours) 0.897 (<0.001) 0.846 (±0.014) 0.867 (±0.006) 0.855 (±0.009) 0.978 (<0.001) 0.978 (<0.001)

Plaque characterization at the artery-level
Method ACC Prec Recall F1 NPV Spec

3D-RCNN [20] 0.810 (<0.001) 0.790 (±0.005) 0.803 (±0.005) 0.795 (±0.004) 0.934 (±0.001) 0.935 (<0.001)
Coro. RCNN [19] 0.844 (<0.001) 0.829 (±0.006) 0.817 (±0.006) 0.820 (±0.004) 0.948 (<0.001) 0.947 (±0.001)
Mesh-Infer. [16] 0.883 (<0.001) 0.873 (±0.002) 0.868 (±0.004) 0.870 (±0.003) 0.960 (<0.001) 0.959 (<0.001)
SC-Net [10] 0.876 (<0.001) 0.866 (±0.003) 0.866 (±0.001) 0.866 (±0.002) 0.957 (<0.001) 0.957 (<0.001)

ADI-Net (Ours) 0.912 (<0.001) 0.904 (±0.001) 0.900 (±0.001) 0.902 (±0.001) 0.970 (<0.001) 0.969 (<0.001)
CAD-RADS classification at the patient-level

Method ACC Prec Recall F1 NPV Spec
3D-RCNN [20] 0.821 (<0.001) 0.738 (±0.040) 0.719 (±0.063) 0.724 (±0.050) 0.971 (<0.001) 0.970 (<0.001)

2D-RCNN+PT. [5] 0.835 (<0.001) 0.804 (±0.019) 0.790 (±0.018) 0.787 (±0.013) 0.973 (<0.001) 0.973 (<0.001)
Coro. RCNN [19] 0.858 (<0.001) 0.849 (±0.014) 0.833 (±0.005) 0.835 (±0.006) 0.976 (<0.001) 0.976 (<0.001)
Mesh-Infer. [16] 0.913 (<0.001) 0.896 (±0.011) 0.898 (±0.003) 0.893 (±0.005) 0.985 (<0.001) 0.986 (<0.001)
SC-Net [10] 0.885 (<0.001) 0.852 (±0.014) 0.834 (±0.017) 0.839 (±0.013) 0.981 (<0.001) 0.981 (<0.001)
CAIN (Ours) 0.959 (<0.001) 0.951 (±0.003) 0.951 (±0.003) 0.951 (±0.003) 0.993 (<0.001) 0.993 (<0.001)

Fig. 4. Experimental results of the ablation analysis for CAIN architecture design.

the CAD-RADS level. As shown in Fig.4a, after removing patient-related config-
urations, there was a significant decline in CAD-RADS classification performance
compared to artery-level predictions, which aligns with the trend observed in
SOTA methods. This suggests that the constructed holistic causal graph, which
more accurately reflects the specific conditions of individual patients, mitigates
the negative impact of confounders on individual patient prediction. Next, we
explored how the maximum capacity M of B influences CAIN performance. As
shown in Fig.4b, with M = 1000, the intervention variable in B effectively cap-
tured individual patient differences while balancing memory usage. To validate
the effectiveness of the patient-adaptive intervention, we controlled the number
of coronary branches involved, randomly selecting 1, 2, 4, or 8 branches to obtain
the intervention variables, instead of using all 16 branches that comprehensively
represent the patient’s coronary tree. As shown in Fig.4c, as the number of in-
volved branches decreased, performance declined significantly, underscoring the
importance of fully utilizing coronary tree information to support targeted causal
interventions for individual patients.
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4 Conclusion

In this work, we propose a novel causal-holistic adaptive intervention network,
which, for the first time, enables personalized CAD diagnosis based on the
unique conditions of each individual. Compared to methods limited to artery-
level predictions, our architecture integrates patient-level holistic causal graphs,
providing patient-adaptive causal interventions, leveraging dual-level semantic
representation and dynamically updated intervention. Comprehensive experi-
ments across three clinical centers demonstrate that CAIN outperforms SOTAs
in dual-level predictions for individual patients, further advancing personalized
CAD diagnosis.
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