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Abstract. Immunohistochemical (IHC) biomarker prediction benefits
from multi-modal data fusion analysis. However, the simultaneous acqui-
sition of multi-modal data, such as genomic and pathological information,
is often challenging due to cost or technical limitations. To address this
challenge, we propose an online distillation approach based on Multi-
modal Knowledge Decomposition (MKD) to enhance IHC biomarker
prediction in haematoxylin and eosin (H&E) stained histopathology im-
ages. This method leverages paired genomic-pathology data during train-
ing while enabling inference using either pathology slides alone or both
modalities. Two teacher and one student models are developed to ex-
tract modality-specific and modality-general features by minimizing the
MKD loss. To maintain the internal structural relationships between
samples, Similarity-preserving Knowledge Distillation (SKD) is applied.
Additionally, Collaborative Learning for Online Distillation (CLOD) fa-
cilitates mutual learning between teacher and student models, encourag-
ing diverse and complementary learning dynamics. Experiments on the
TCGA-BRCA and in-house QHSU datasets demonstrate that our ap-
proach achieves superior performance in IHC biomarker prediction using
uni-modal data. Our code is available at https://github.com/qiyuanzz/
MICCAI2025_MKD.
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1 Introduction

Tumor biomarkers, including estrogen receptor (ER), progesterone receptor (PR),
and human epidermal growth factor receptor 2 (HER2), play a critical role in
breast cancer diagnosis, therapeutic decision-making, prognostic assessment, and
disease monitoring [20]. However, determining biomarker status through IHC
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staining is both time-consuming and costly [14]. With the increasing use of dig-
ital histopathology and rapid advancements in deep learning, predicting IHC
biomarker status from H&E-stained whole slide images (WSIs) has emerged as
a promising alternative [14,20]. This method not only offers a more efficient and
cost-effective alternative to traditional IHC staining, but also holds significant
potential for uncovering complex morphological features intricately linked to
biomarker status [5].

In recent years, extensive research has focused on leveraging H&E-stained
pathology images to predict tumor biomarker status. Early methods predom-
inantly relied on fully supervised learning, which typically involved training
patch-level classifiers based on annotations, with predictions aggregated across
the entire WSI to infer patient-level biomarker status [9,14]. Since these methods
required detailed pixel-level annotations by clinicians, they suffer from a time-
intensive and laborious annotation process. The growing adoption of multiple
instance learning (MIL) in computational pathology has driven a shift toward
weakly supervised learning methods, offering a more efficient and scalable alter-
native. For instance, Lu et al. [13] proposed a novel method that utilizes graph
convolutional neural networks to extract WSI-level representations for predict-
ing HER2 status, enabling the model to capture the global biological geometric
structure of entire slides. Wang et al. [20] employed CTransPath [21] as a feature
extractor and designed a multi-label learning model capable of simultaneously
predicting ER, PR, and HER2 biomarker statuses. This innovative approach
highlights the growing potential of combining foundational models with MIL
aggregation to enhance biomarker prediction performance.

Weakly supervised learning models demonstrate great potential in WSI clas-
sification, but their performance can often be improved by incorporating sup-
plementary data. Recent studies have shown that joint training with genomic
profiles and pathology slides can significantly enhance performance in tasks such
as tumor subtyping, survival regression, and tumor grading [2,3,29,25,7]. For
instance, Chen et al. [2] proposed a cross-modal attention mechanism to inte-
grate pathology and genomic features, which enhances the model’s ability to
capture complex inter-modal relationships. Zhou et al. [29] developed two paral-
lel encoder-decoder architectures to fuse intra-modal information and generate
cross-modal representations, thus improving the model’s representational capac-
ity and predictive accuracy. Despite these advancements, clinical application of
multi-modal learning is often hindered by the high costs and technical complex-
ities associated with acquiring genomic and pathology data simultaneously.

In order to mitigate the need for expensive genomic data collection, we pro-
pose an approach that leverages multi-modal data during training while enabling
inference using only pathology slides. To handle missing modalities during test-
ing, we employ knowledge distillation (KD) [6], a widely-used technique for trans-
ferring knowledge from a multi-modal teacher to a uni-modal student [23]. How-
ever, several challenges remain when applying KD to our scenario: (1) Teacher
models are often selected based on subjective experience rather than objective
metrics, leading to suboptimal guidance and inconsistent distillation outcomes.
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(2) According to the Modality Focusing Hypothesis (MFH) [26], the effective-
ness of cross-modal KD depends on the retention of modality-general decisive
features in the teacher model. A higher proportion of such features enhances
student model performance, yet effective strategies to increase this proportion
remain underexplored and challenging.

To address the aforementioned challenges, we propose an online KD approach
based on multi-modal knowledge decomposition (MKD), designed to amplify the
representation of modality-general decisive features while concurrently optimiz-
ing the efficacy of both student and teacher models. Our main contributions are:
(1) We employ the MKD to enhance the transferability of modality-general deci-
sive features from the teacher model. (2) We propose a robust and efficient online
KD model that ensures the teacher and student models appropriately capture
the relative relationships among samples, while fostering greater diversity and
complementarity in dynamic learning. (3) Extensive experiments show that both
the teacher and student models achieve state-of-the-art (SOTA) performance on
both the public TCGA-BRCA and in-house datasets in biomarker prediction.

Self-Normalizing Neural NetworksSNN

Cox model Cox Proportional Hazards Model

Element-wise Multiplication

Head Classification Head

Label

Fully Connected LayerFC

Fig. 1. Overview of our approach. Note that our approach includes four components:
multi-modal data preprocessing (MDP), MKD, SKD, and CLOD.

2 Methods

Fig. 1 shows an overview of the proposed approach, including four compo-
nents: MDP, MKD, SKD, and CLOD. The process starts by extracting ge-
nomic and pathomic features, then decomposing multi-modal knowledge into
pathology-specific, modality-general, and genomics-specific features. SKD en-
ables the pathology student model to learn sample relationships, while CLOD
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fosters mutual learning between teacher and student models. During training,
gradients accumulate over multiple samples before updating model parameters,
allowing SKD to capture feature relationships. Details are provided below.

2.1 Multi-modal Data Preprocessing (MDP)

Given a WSI, it is divided into multiple tiles, with tissue tiles selected using the
CLAM toolbox [12]. Feature embedding is then performed on tissue tiles using
the UNI foundation model [1]. Let P ∈ Rnp×d denote the feature embedding for a
WSI, where np is the number of tissue tiles, and d denotes the feature dimension.
We hypothesize that genes associated with overall survival (OS) of patients are
also associated with IHC biomarker status. Thus, the Cox proportional hazards
model [4] is employed to identify the top K genes most relevant to patients’ OS
from genomic profiles, with the genomic features reshaped into a representation
G ∈ Rng×d based on their rankings, where ng = ⌊K/d⌋.

2.2 Multi-modal Knowledge Decomposition (MKD)

To thoroughly decompose and integrate knowledge, we develop two teacher and
one student models, each tailored to capture distinct aspects of genomic pro-
files and pathology slides. These aggregators focus on collaboration, unique-
ness, and general representation, facilitating a comprehensive understanding of
multi-modal data. As observed in Fig. 1, pathology features P are first com-
pressed using a fully connected layer, followed by further compression using the
Attention-based MIL (ABMIL) [8] in the student model SP , as expressed as:
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where V,U ∈ Rnp×d and W ∈ Rd×1 are learnable linear projection matrices,
and ⊙ is an element-wise multiplication. Similarly, genomic features G undergo
a two-step process in the teacher model TG: they are first compressed via a Self-
Normalizing Network (SNN) [10], followed by refinement with ABMIL. Mean-
while, we build a teacher model TM , which fuse the global representations of two
modalities learned by ABMIL using the Kronecker product [19]. By processing
through the three distinct aggregators including pathology-specific, modality-
general, and genomic-specific features, the multi-modal knowledge are system-
atically decomposed, enabling the extraction of an integrated and meaningful
knowledge representation.

To advance knowledge distillation and enhance the model’s generalization
ability, we perform domain alignment on the decomposed knowledge. Specifically,
we minimize the CORAL loss [16] between the decomposed knowledge, which is
expressed as:
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where ∥·∥F denotes the Frobenius norm, and Cb
j ∈ Rd×d is the covariance matrix

for b cumulative samples, where j ∈ {P,G,M}. The LCORAL loss reduces covari-
ance differences across modalities, aligning features into a unified representation
for compatible decomposed knowledge. To transfer decisive modality-general fea-
tures to the student model SP , we introduce a pairwise orthogonality constraint,
promoting feature independence and ensuring each captures distinct, comple-
mentary information from different modalities. To enforce this, we introduce an
orthogonal loss function as follows:

LOR = |⟨zp, zg⟩|+ |⟨zp, zm⟩|+ |⟨zg, zm⟩| , (3)

where ⟨·⟩ denote the dot product, and |·| is the absolute operation used to enforce
pairwise orthogonality between inputs. zp, zg, zm ∈ R1×d represent the features
specific to pathology, genomics and multi-modal general features, respectively.
This orthogonal loss reduces redundancy and promotes more robust feature rep-
resentations across modalities. Consequently, our MKD loss is calculated as:

LMKD = LCORAL + αLOR, (4)

where α is a hyperparameter that serves as a weighting parameter.

2.3 Similarity-preserving Knowledge Distillation (SKD)

To capture sample relationships, we introduce SKD [18] to guide the training of
the student model SP , ensuring input pairs with similar (or dissimilar) activa-
tions in the teacher network also produce similar (or dissimilar) activations in
the student network. Our SKD loss is calculated as:

LSKD = LPM
SKD + LPG

SKD, (5)

where the LPM
SKD loss for a single pair of student and teacher models is computed

as:
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where ∥·∥2 denotes row-wise L2 normalization, and Zb
p, Zb

M denote the patho-
logical and multi-modal feature matrices for b concatenated samples. The loss
LPG
SKD is computed similarly as in Eq.(6). Notably, our comprehensive SKD loss

effectively preserves the consistency of the activation similarity matrices MM ,
MP , MG, enabling effective knowledge transfer within multi-modal feature space
while maintaining their internal sample-specific structures.

2.4 Collaborative Learning for Online Distillation (CLOD)

To foster collaborative learning between teacher and student models, we adopt
an online learning framework [28,30], which consolidates training into a single
stage by treating all networks as peers. This framework facilitates symmetrical
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knowledge sharing, allowing each network learn equally from others without
being overly reliant on a predefined teacher model. Our CLOD loss is defined as:

LCLOD = KL (pP ||pM ) +KL (pM ||pP ) +KL (pP ||pG) +KL (pG||pP ) , (7)

where pP , pM , pG denote the probability distributions predicted by the pathology-
specific, modality-general, and genomic-specific classification heads, respectively.
The Kullback-Leibler (KL) divergence terms in Eq.(7) measure distribution dis-
crepancies, promoting alignment and mutual knowledge sharing across networks.
This collaborative setup fosters diverse learning dynamics and enables bidirec-
tional knowledge exchange, improving overall performance. Therefore, the overall
loss L of our online KD model is formulated as:

L = LCE + LMKD + LSKD + LCLOD, (8)

where LCE represents the overall cross-entropy loss calculated for two teacher
models and one student model.

3 Experiments and Results

3.1 Datasets and Implementations

TCGA-BRCA: The TCGA-BRCA dataset provides a multi-omics resource,
with cases having missing or low-quality genomic profiles or pathology slides
excluded. For patients with multiple slides, one diagnostic slide was randomly
selected. Genomic profiles were represented using log-transformed, Z-score nor-
malized RNA-Seq expression values. In Fig. 2, the left three ring charts illustrate
the distribution of patients across the ER, PR, and HER2 labels in this dataset,
which are used for both internal training and testing cohorts.

HER2+(470)

HER2-(1218)

PR+(1750)

PR-(634)

ER+(1822)

ER-(562)

ER+(551)

ER-(165)

HER2+(102)

HER2-(601)

PR+(482)

PR-(232)

TCGA-BRCA QHSU

Fig. 2. Summary of public TCGA-BRCR and in-house QHSU cohorts.

QHSU: QHSU dataset includes 2384 H&E-stained WSIs, with each WSI
corresponding to an individual breast cancer patient. IHC biomarker informa-
tion for these patients was obtained from diagnostic records assessed by skilled
pathologists. In Fig. 2, the right three ring charts illustrate the distribution of pa-
tients across the ER, PR, and HER2 labels. Since this in-house dataset contains
only pathology slides, it is used as an external test set.
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Evaluation & Implementation: We performed a 5-fold cross-validation on
the TCGA-BRCA internal cohort and report the average test performance across
all folds. The five trained models were then tested on the external QHSU cohort,
with average results reported. Our model was implemented in Python using
the PyTorch library, and trained on a workstation equipped with an NVIDIA
GeForce RTX 4090 GPU. We used the AdamW optimizer with a learning rate
of 2e-4, a weight decay of 1e-5, and a temperature of 4. The hyperparameter α
in Eq.(4) was fine-tuned and set to 1/6. Model parameters were updated after
accumulating gradients from 16 samples.

3.2 Experimental Results

Internal Comparison. The proposed model was compared against seven MIL
methods [8,12,15,27,11,17,20], two KD approaches [22,24], and three multi-modal
learning models [2,3,29] to evaluate its effectiveness and flexibility. As presented
in Table 1, the internal comparisons on the TCGA-BRCA cohort reveal that
our model, when using only pathology slides, achieves the best overall perfor-
mance compared to SOTA methods, with a 2% improvement in AUC values
and notable improvements in other metrics. This highlights the capability of
the teacher model to effectively transfer critical and generalizable features to
the student model, thereby enhancing its performance. In multi-modal testing,
all models perform better than using pathology slides alone, particularly for
HER2 prediction. Notably, our model consistently ranks first or second across
various metrics, indicating that joint training of teacher and student models fos-
ters mutual learning without compromising individual performance. In addition,
our approach eliminates the need to explicitly validate the teacher’s guidance,
significantly reducing computational costs.

Table 1. Comparisons with SOTA methods on the TCGA-BRCA dataset. The bold
and underlined fonts highlight the best and the second-best results, respectively.

Modality Models ER(%) PR(%) HER2(%)
AUC ACC F1 AUC ACC F1 AUC ACC F1

Patho. ABMIL [8] 88.91 84.85 89.84 86.10 80.55 85.08 72.13 77.30 39.36
CLAM [12] 89.20 85.69 90.68 85.33 82.22 86.86 70.51 80.56 37.13

TransMIL [15] 87.77 86.94 91.82 81.37 77.50 83.04 66.23 75.60 33.45
DTFD [27] 89.89 86.66 91.37 86.50 82.36 86.76 70.72 75.88 40.18
WIKG [11] 88.05 84.44 90.10 85.54 78.88 70.37 68.50 74.89 38.30
RRT [17] 89.35 83.33 88.28 86.61 80.55 85.31 68.08 77.44 28.13

DAMLN [20] 89.58 85.97 91.39 86.38 81.80 86.54 69.92 84.53 22.37
GEE [22] 90.01 84.30 89.37 86.24 81.52 85.81 70.06 74.60 41.32
TDC [24] 89.35 83.33 88.28 84.75 73.05 77.01 72.86 77.87 42.87

Ours 93.31 88.47 92.58 88.65 83.75 88.14 74.56 81.56 39.10
Multi. MCAT [2] 94.64 90.41 93.68 90.37 85.28 88.75 93.10 84.96 65.06

Porpoise [3] 92.64 89.86 93.28 91.79 85.97 89.57 92.80 89.65 68.94
CMTA [29] 93.91 89.44 93.15 91.51 83.63 87.26 92.03 87.94 66.55

Ours 95.81 90.24 93.67 91.39 85.28 89.26 95.76 92.48 76.88
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Table 2. Comparisons with SOTA methods on the QHSU dataset.

Modality Models ER(%) PR(%) HER2(%)
AUC ACC F1 AUC ACC F1 AUC ACC F1

Patho. ABMIL [8] 87.27 83.09 89.55 82.71 64.63 69.67 72.41 56.92 50.76
CLAM [12] 86.83 82.71 89.16 80.93 64.01 68.73 73.67 60.91 49.43

TransMIL [15] 84.74 81.24 88.21 78.33 71.42 78.48 68.95 58.83 42.49
DTFD [27] 87.50 82.69 89.41 81.64 61.85 65.73 71.90 56.93 50.70
WIKG [11] 82.79 84.44 90.10 79.04 58.48 60.23 70.38 52.50 49.26
RRT [17] 85.31 81.44 88.65 79.09 67.13 72.98 71.81 57.17 49.78

DAMLN [20] 86.02 82.45 88.58 81.18 70.34 76.57 73.40 69.44 42.71
GEE [22] 88.31 83.30 87.95 82.94 70.40 76.17 71.09 49.53 48.28
TDC [24] 87.77 78.48 84.31 83.40 59.19 62.72 68.88 59.38 51.29

Ours 89.00 84.97 90.45 84.36 74.01 79.95 74.12 57.79 52.74

External Comparison. Table 2 shows the external comparison results on
the QHSU dataset. The results reveal that models trained with knowledge dis-
tillation generally outperform MIL models trained solely on pathology slides in
ER and PR predictions, indicating that knowledge distillation enables student
models to learn more robust features. Notably, our model outperform all com-
parative methods on the external test set, demonstrating the effectiveness of our
multi-modal knowledge decomposition in extracting general decisive features.

Table 3. Ablation study of MKD, SKD, CLOD modules on the TCGA-BRCA dataset.

Modality Modules ER(%) PR(%) HER2(%)
MKD SKD+CLOD AUC ACC AUC ACC AUC ACC

Patho. 88.91 84.85 86.10 80.55 72.13 77.30
✓ 93.00 86.94 87.70 84.02 72.19 82.26

✓ 91.80 85.97 87.58 83.19 67.00 80.00
✓ ✓ 93.31 88.47 88.65 83.75 74.56 81.56

Multi. 94.45 90.97 90.14 84.16 93.57 90.78
✓ 91.96 89.58 88.90 84.86 92.48 94.18

✓ 95.75 90.55 91.05 84.02 95.57 93.61
✓ ✓ 95.81 90.24 91.39 85.28 95.76 92.48

Ablation Study. We conducted ablation experiments on the TCGA-BRCA
dataset to assess the contributions of the MKD, SKD and CLOD modules to
overall model performance. Table 3 presents evaluation results. It is observed
that the MKD module greatly enhances the performance when utilizing pathol-
ogy slides alone. In contrast, the SKD and CLOD modules, as knowledge distilla-
tion components, significantly improve the performance of multi-modal models.
Overall, the inclusion of all three modules greatly facilitates mutual learning
between the teacher and student models, leading to consistently enhanced per-
formance across different evaluation metrics.
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4 Conclusion

In this paper, we propose a multi-modal knowledge decomposition based online
distillation method for predicting multiple IHC biomarkers from H&E-stained
breast cancer WSIs. Our key innovation lies in the MKD module, which effi-
ciently decomposes input features into pathology-specific, modality-general, and
genomics-specific components, facilitating the transfer of both generalizable and
decisive knowledge. Additionally, the SKD module enhances knowledge transfer
across samples by preserving their internal structures, while the CLOD module
fosters mutual learning and knowledge sharing between the teacher and student
models. Experiments conducted on two datasets demonstrate that our method
achieves superior performance in both uni-modal data testing. Our approach is
highly flexible, as its inference supports pathology slides, genomics profiles, or
both, depending on available modalities.
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